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Introduction

The modern era of cosmology started after Einstein’s formulation of General Relativity (GR)

in 1915 [1, 2, 3, 4]. The first attempts of describing the dynamics and evolution of Universe

as a whole began by early works of Einstein himself. Einstein introduced a new constant

called cosmological constant, Λ, in order to maintain the gravitational stability against the

gravitational contraction of dust-like matter in the Universe [5]. Namely, he modified GR

equations as follows

Gµν + Λgµν =
8πG

c4
Tµν . (1)

Although many years later Einstein himself concluded that introducing Λ was not needed,

cosmological constant remained as the important and inevitable part of relativistic cosmol-

ogy. Later, Russian mathematician Alexander Friedmann introduced some basic cosmolog-

ical models based on GR [6, 7]. These models now known as Friedmann models, describe

three different scenarios of our Universe i.e. contracting, expanding and accelerated expand-

ing Universe, where the final state of our Universe depends on the amount of its matter

content [8, 9, 10, 11, 12]. For all of these models it is assumed that Universe is spatially

homogeneous and isotropic. Namely, the spacetime metric is written as

ds2 = c2dt2 − a2(t)[
1

1− kr2
dr2 + r2Ω2] (2)

where a(t) is called the scale factor and k stands for spatial curvature and can be ±1, 0.
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Consequently, the GR equations will be written as

ȧ2 + kc2

a2
=

8πGρ

3
(3)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
(4)

In the above equations, ȧ = da
dt

. Moreover, the so called Hubble constant is defined is defined

as

H =
ȧ

a
(5)

However, the models remained purely theoretical until Edwin Hubble and Georges Lemâıtre

concluded that the galaxies outside our Local Group are moving away from us with velocities

directly proportional to their distance [13, 8]. This conclusion changed the situation in favor

of expanding models.

Later, the astronomical observations revealed a new feature of matter in the galaxies and

clusters. Assuming that the galactic dynamics is governed by Newtonian theory, astrophysi-

cists were able to find the mass of celestial objects based on virial theorem. However in

1933 Zwicky [85] noticed that the amount of dynamical mass in Coma cluster is roughly 10

times more than the luminous matter which can be detected via observations. In addition

to this fact, later the flatness of rotation curves in spiral galaxies indicated that there must

be some form of non-luminous matter [15]. These observational issues leaded scientists to

a new concept in relativistic cosmology i.e. Dark Matter (DM) to be responsible for the

missing matter in the Universe.

Nowadays, based on latest Planck satellite [16] data, it is concluded that the matter,

including both baryonic and non-baryonic, contributes only 31.7 % to the content of our

Universe. Among that, the 26.8 % is Cold Dark Matter (CDM). However, the nature of DM

is still unknown. A number of models have been proposed for DM, among those primor-
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dial black holes, class of objects called massive compact halo objects (MACHOs). While for

non-baryonic DM, they are hypothetical particles such as axions, sterile neutrinos, weakly in-

teracting massive particles (WIMPs), gravitationally-interacting massive particles (GIMPs),

supersymmetric particles etc. The search of DM particles is an active area of theoretical as

well as observational astrophysics and experimental physics [18].

Considering DM in galaxies, it is commonly believed that DM halos envelope the whole

galaxies. Since no direct observation has yet confirmed the exact shape of these halos,

various DM halo density profiles have been introduced by astrophysicists. Here we list some

of the commonly used profiles to model DM halos. The first introduced profile is called

pseudo-isothermal profile which is written as [17]

ρ(r) = ρ0

[
1 +

(
r

rc

)2
]−1

, (6)

where ρ0 denotes the central density and rc is the core radius. The other profile is Navarro-

Frenk-White (NFW) [19] which has a wide range of applications for different galaxies. For

this profile, we have

ρ(r) =
ρcritδc(

r
rc

)(
1 + r

rc

)2 , (7)

here ρcrit is the critical density of the universe defined as

ρcrit =
3H2

8πG
, (8)

in which H stands for Hubble constant. One of the important features of this profile is that,

it depends directly on the cosmological parameter ρcrit. The dimensionless parameter δc,

which is called characteristic parameter, relates ρcrit to ρ0 for the halo under consideration

i.e. ρcrit = δcρ0. Although NFW is widely used, other similar profiles are also considered for
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modeling the halos. Among them, Burkert [20],

ρ(r) =
ρcritδc(

1 + ( r
rc

)
)(

1 + ( r
rc

)2
) (9)

and Moore profile [21]:

ρ(r) =
ρcritδc(

r
rc

) 3
2
(

1 + ( r
rc

)
3
2

) (10)

are the most well-known profiles. All of the three profiles have been used to model DM halo

of M 31 [22].

As mentioned above, the first indirect observation of DM was related to Virial Theorem

σ2 =
GM

R
, (11)

where σ, M and R stand for velocity dispersion, virial mass and virial radius respectively.

Considering the above mentioned profiles for DM halos, the velocity dispersions read as (see

[23] for more details)

σ2
NFW = 4πGρc

r3
c

r
(ln
(
1 +

r

rc

)
−

r
rc

(1 + r
rc

)
), (12)

σ2
Moore =

8

3
πGρc

r3
c

r
(ln(1 +

( r
rc

) 3
2 )), (13)

σ2
Burkert = 2πGρc

r3
c

r
((ln

(
1 +

r

rc

)√
1 +

( r
rc

)2
)− arctan(

r

rc
)). (14)

Another widely used model is the Einasto profile which is written as [24]

ρ(r) = ρee

(
−dn

(
( r
re

)
1
n−1

))
(15)
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Constructed based on Einasto model [25], dn is a function of n such that ρe is the density

at the radius re that defines a volume containing half of the total mass.

As mentioned above, the Planck satellite provides us the information on the content of

our Universe, whence 68.3 % of the Universe is in the form of Dark Energy (DE) which

causes the accelerated expansion of the Universe. The rest is mainly due to contribution of

matter where the dominant part is in the form of DM.

Currently DE observationally favors the properties of the cosmological constant Λ. Then,

by considering Λ in the GR equations, we will have

ȧ2 + kc2

a2
=

8πGρ

3
+

Λc2

3
, (16)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (17)

According to ΛCDM cosmology, almost 96% of our Universe content is due to Dark

Sector (DS) which is made up of DE and DM. Note, that besides ΛCDM cosmology there

are also other alternative theories which try to explain the available observational data.

The underlying principle behind these theories is quite simple. In order to explain the

observational results, physicists modify the original theories of Newtonian gravity and GR

by introducing new parameters. For relativistic theories, such modifications date back to

early works of Brans and Dicke where it is assumed that Newton’s universal gravitational

constant G is not actually a constant and a new scalar field φ is introduced instead of G.

For such theories the action is written as

S =
c4

16π

∫ (
φR− ω

φ
∂aφ∂

aφ

)√
−gd4x, (18)

where ω is a dimensionless constant known as Dicke coupling constant [26]. Besides that,

it is also possible to modify GR by introducing some higher order terms in Einstein-Hilbert
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action

S =
c4

16πG

∫
R
√
−g d4x, (19)

where R is called Ricci scalar. This approach is generally called f(R) theories of gravity

[75, 58]. All these modified theories should reduce to ordinary GR at specific regimes.

On the other hand, Modified Newtonian Dynamics (MOND) [29, 30, 31] is one of the well

known candidates for explaining the missing matter in galaxies to revisit the DM problem.

In MOND theory, Newton’s second law is modified as

F = maµ(
a

a0

), (20)

where µ( a
a0

) is called the “extrapolating function” and depends on the new parameter a0 ≈

1.2 × 10−12ms−2. Thus, although for a0 << a Newton’s second law remains valid, in the

so-called “deep-MOND” regime, it is modified to

F = m
a2

a0

, (a << a0). (21)

Consequetly, for the circular motion of an object with mass m around another object with

mass M , one can write

GmM

r2
= m

(v
2

r
)2

a0

. (22)

Considering the above relation, it turns out that we can explain the so-called “flat rotation

curve” of galaxies without any need of dark matter. Meantime, it is possible to interpret

Eq.(22) as the modification of Newtonian gravity, leaving Newton’s law intact. In such case,

the modified gravitational potential will be written as

Φ = (GMa0)
1
2 lnr. (23)
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Thus, for DM paradigm, MOND proposes a modification of gravity according to Eq.(22)

without any further need to DM. The question whether we have to accept MOND or DM

should be solved with observations. To this aim, one of the analysis is studying the rotation

curve of galaxies. One of the best cases for such study is galaxy M31. However, rotation

curves based on MOND yields to totally different values seeming to be inconsistent with

observations [32]. It should be noticed that, in addition to M31, there are several other

galaxies i.e. NGC 2841, NGC 3198 [33], M33 [32, 34], UGC 4173 [35], UGC 6787 and UGC

11852 [36], for which rotation curves are poorly fitted with MOND.

In this thesis, we follow the same path of modification of gravity to describe the DS. Our

fundamental principle to do such modification is the Newton theorem which is a mathemat-

ical theorem about the equivalency of gravitational field of sphere and that of a point-mass

located in its center. Namely, in 1687, Newton published his book “Principia Mathematica”

[37] where for the first time he introduced a universal law for gravitational effects based on

some mathematical formulation. The formula is quite simple and familiar

F = −Gm1m2

r2
. (24)

The interesting feature of this formula is the proportionality of gravitational force to inverse

squared of the distance. However, it should be noticed here that the main reason that Newton

started to think about the so called “Inverse Squared Law” was not some sort of intuitions but

a profound foundational argument which he proved mathematically 20 years after starting

to think about it. The argument is related to the fact that, in the real world we are always

dealing with extended objects. However, Eq.(24), has been written for two point-like objects.

So the above formulation won’t be applicable to the physical reality, unless we prove that it

is possible to consider extended spherical objects with mass M , as some point-like objects

with all mass M concentrated at that point. This was the main challenging problem for

Newton. However, he succeeded to prove that when the force is written as C
r2

, where C is
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a constant, it is possible to do such consideration. Although, Newton’s gravitational theory

fulfills the above mentioned principle, it is not the most general form. Namely, it has been

proved in [38] that the most general form of the force is obtained by solving the following

equation

r2

2
F ′′(r) + rF ′(r)− F (r) = 0, (25)

and has solutions in the form of

F (r) =
C1

r2
+ C2r, (26)

in which C1 and C2 are two constants. It is obvious that the first term in Eq.(26) is the

ordinary Newtonian gravitational force, whereas the additional linear term can be considered

as analogous to cosmological constant.

This thesis consists of three chapters.

In the first chapter we study the nature of both terms of Eq.(26). By considering

the analogy between the second term C2, and the cosmological constant, we show that it is

possible to describe the DS via a unified theory of gravity [39]. Furthermore, we present a

prospective test to detect the possible deviations of GR and the modified theory of gravity.

Finally, based on the results we discuss the refutation of some the current alternative theories

of gravity.

In the second chapter following the results of first chapter, we use the group-theoretical

methods to present a mathematical proof for identification of C2 as the cosmological constant.

Then, we study the consequences of Λ considered as one of the fundamental constants of

Nature.

In the third chapter we revisit the current main observational results according to our

modified theory of gravity. Namely, we obtain the possible error limits over the cosmological

8



constant, based on the data of astrophysical configurations. Then, we generalize these results

to the recently discovered extreme galaxies regarding the nature of DM. After that, based

on our modified theory of gravity we propose a possible solution to the so-called H0 tension.

Finally, we check the role of cosmological constant in the stability of N -body gravitating

systems.

The main results of the thesis are formulated in Conclusions.

The results of this thesis are published in [40], [41], [42], [43], [44], [45], [46], [47], [48].
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Chapter 1

Newton Theorem and Dark Sector

1.1 Introduction

According to historians of science, Newton postponed the publication of his theory of gravity

for 20 years. The reason was that, originally his theory had been written for point particles.

However, in order to apply his theory of gravity to celestial dynamics, he had to prove that

“The gravitational field of a sphere acting on external objects is equivalent to that of a point

mass located at its center”. The above statement which is called “Newton Theorem”, ensured

Newton to consider the spherical objects as points. Considering the “Newton Theorem” as a

mathematical theorem to find the most general form of the function in which “Sphere=point”

equivalency is correct, it has been shown in [38], that besides the ordinary Newtonian term,

there is another additional linear term such that:

F (r) = −Gm1m2

r2
+ Cr, (1.1)

On the other hand, by considering the McCrea-Milne cosmological model, it can be shown

that the behaviour of linear term will be similar to the one by cosmological constant. Namely,

regarding Eq.(1.1), the equations of motion of a test particle on the surface of expanding

11



sphere will be written as:

ä = −4πa3ρ

3a2
+ Ca (1.2)

where a is the radius of the sphere and ρ is its density. This equation, will coincide the

Friedmman equations in the GR written for FLRW metric in the of presence non-zero Λ.

However, besides the above analogy, the linear term in Eq.(1.1) has another important

feature. Namely, it produces a non-force free field inside the sphere. But, this oscillator term

does not change O(4) symmetry of the Newtonian field. Moreover, it correponds to the only

field possesing the Newotnian one: the closing of orbits at any negative value energy i.e. the

coincidence of the period of variation of the value of radius vector with that of its revolution

by 2π.

Although the contribution of the second term is so small that it excludes its checking by

experimental methods, its contribution can be evaluated from the analysis of the structure

of galaxy clusters, their halos etc. This is the topic which we will discuss with more details

in next section. The results discussed in this chapter have been published in [41] and [45].

12



1.2 On the common nature of dark matter and dark

energy: galaxy groups

The observational indications for the DM and DE have stipulated the active development of

variety of models, including those of modifications of Newton’s gravity and of GR. Various

principles are taken as bases in those models, such as scalar-tensor, f(R) theories, MOND

(see [49, 50, 51, 52] and refs therein) with different motivations and with the natural aim to

satisfy the observational data or to suggest verification tests for future observations.

Below we reconsider a principle which is in the very roots of Newton’s gravity, i.e. the

theorem that a sphere is acting gravitationally as a point mass situated in its center. That

theorem had enabled Newton to attribute the gravitational law r−2 to the motion of planets

which are definitely extended spheres and are not point masses. Later the Newton’s gravity

became a key element GR, acting as its weak field limit and enabling to correspond the

predicted effects with the observed ones. That concerns, however, the Einstein equations

without the cosmological term and Einstein’s motivation [5] for introducing the cosmological

constant was the static Universe. In the approach below we show that the cosmological term

appears in Einstein’s equations from the above mentioned theorem proved in [54].

As shown in [38], the most general function satisfying that theorem, besides the usual

r−2 term, contains also another term with a cosmological constant.

Taking that modified Newton’s law with a cosmological constant as the weak field limit

of GR one arrives to a modification of GR containing the cosmological term naturally! We

then show that this approach both to Newton’s gravity theory and to GR enables one to link

two observational facts, i.e. the dark matter in the galaxies and the cosmological constant.

The dark matter then appears as an observational contribution of repulsive gravity at large

scales, i.e. in galactic halos and clusters of galaxies.

13



1.2.1 Newton’s theorem and General Relativity

As shown in [38] the most general function for the force satisfying Newton’s theorem i.e. the

condition for the sphere to attract as a point of the sphere’s mass and situated in its center

has the form

f(r) = Ar−2 + Λr, (1.3)

as the solution of equation

r2

2
f ′′(r) + rf ′(r)− f(r) = 0, (1.4)

where A and Λ are constants.

The second term corresponds the cosmological constant term if one turns to the New-

tonian form of the Friedmann cosmological equation [38]. Eq. (1.3), however, within the

context of the shell theorem defines a force-free field only in the center of a shell, but preserves

the O(3) symmetry.

Turning to the GR, instead of the usual Newtonian limit for its weak field approximation

[65] now metric tensor components g00 and grr will be modified and one will have the metric

for the point mass as

ds2 = (1− 2Ar−1 − Λr2/3)c2dt2 + (1− 2Ar−1 − Λr2/3)−1dr2 + r2dΩ2. (1.5)

The principal fact here is in the following. The Einstein equations without cosmological

term are considered to have the usual Newtonian limit in weak-field approximation, while

the Einstein equations with cosmological term will formally violate that limit, e.g. according

to Weinberg “..Λ must be very small so as not to interfere with the successes of Newton’s

theory of gravitation.” (Chapter 7.1, [65]). We now see that via Eq.(1.3) that violation is

removed. Eq.(1.5) is the covariant metric having its weak-field limit Eq.(1.3) [54].

14



Instead, we see that Eq.(1.3) ensures the weak-field limit for Einstein equations with

cosmological constant

Gµν + Λgµν = κTµν . (1.6)

The adoption of the Newton’s ”sphere = point mass” theorem and hence of the Eq. (1.3)

will readily lead to renormalization in various predictions of GR. Although such modification

of GR coincides with its original form of Einstein’s equations, there is drastic difference in

the motivations.

Here the starting point is the Newton’s gravity and his sphere-point theorem and Λ is

appearing in Einstein’s equations readily and not as an extra term added by hand to fulfill a

static universe concept. Namely, if Newton might have found the general function Eq. (1.3),

then Einstein initially would have written GR equations with Λ i.e. with the link of O(3)

and the Lorentz group.

Of course, the Λ-term in Eq.(1.5) has been considered previously (Schwarzschild – de

Sitter metric), however, the Newton theorem’s approach described here, as we will see below

leads to insights on the common nature of the dark matter and dark energy (cosmological

constant).

1.2.2 The Eq.(1.3), the cosmological constant and the dark matter

If the Einstein equations with the cosmological constant have the Newtonian limit Eq.(1.3),

then one will have a link e.g. to the two currently adopted principal observational facts

on the dark energy and the dark matter. Indeed, while the cosmological constant in the

Einstein equations is considered to describe the acceleration of the Universe, the Newtonian

potential and its modifications are attributed e.g. to the observational indications for the

dark matter in the galaxies.

The value of the cosmological constant is deduced in several ways, the one indicated by
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the Planck data [16] is

Λ ' 1.1× 10−52m−2. (1.7)

Regarding the dark matter in the galaxies, it is shown that the parameters of the halos de-

termine the late disk and early spheroidal structures of the galaxies [55]. Then, for virialized

(for ”oscillator” term ∝ Rk with k = 2, see Eq. (10.7) in [56]) structures we have

Λ =
3σ2

2c2R2
' 3× 10−52(

σ

50 kms−1
)2(

R

300 kpc
)−2m−2, (1.8)

normalized to the velocity dispersion at a given radius of halo.

Numerically Λs in Eq.(1.7) and Eq.(1.8) are close and this fact can be interpreted as

follows. The positive cosmological constant corresponds to the accelerating Universe and

hence to negative pressure and to repulsion as evidence of vacuum energy [85]. The crucial

point regarding the dark matter is that Eq.(1.3) defines non-force-free field within the sphere

except its center, increasing from center, thus mimicking increase of the central mass. Thus,

within this interpretation the dark matter is a gravitating mass with force (1) and revealing

its repulsion at large scales e.g. in galactic halos. The effective increase of the central

attracting mass will support the effect of “flat rotation curves”, although, obviously, the

description of given observational rotation curves will need extensive modeling and numerical

simulations for the input parameters of the disk and halo. For the analysis of the dark matter

problem within f(R) theories see [58].

1.2.3 Galaxy groups and Eq.(1.8)

We now test this approach on Λ-nature of dark matter using the data by Karachentsev et al

[59] for a sample of 17 galaxy groups of Hercules—Bootes region which (the data) include

the rms galactic velocities σ and the harmonic average radii Rh of the groups. Then, using

Eq.(1.8) we obtain the Λ as presented in the Table 1.1; the galaxy groups are denoted by

16



Table 1.1: Λ obtained using Eq.(1.8) for galaxy groups of the Hercules—Bootes region

Galaxy group σ(km/s−1) Rh(kpc) Λ(m−2)

NGC4736 50 338 3.84E-52

NGC4866 58 168 2.09E-51

NGC5005 114 224 4.55E-51

NGC5117 27 424 7.12E-53

NGC5353 195 455 3.23E-51

NGC5375 47 66 8.91E-51

NGC5582 106 93 2.28E-50

NGC5600 81 275 1.52E-51

UGC9389 45 204 8.55E-52

PGC55227 14 17 1.19E-50

NGC5961 63 86 9.43E-51

NGC5962 97 60 4.59E-50

NGC5970 92 141 7.48E-51

UGC10043 67 65 1.87E-50

NGC6181 53 196 1.28E-51

UGC10445 23 230 1.76E-52

NGC6574 15 70 8.07E-52

Average 8.24E-51

St.deviation 1.15E-50

the name of the brightest galaxy (first column).

The correspondence of values of Λ in Table 1 to those in Eq.(1.7) and Eq.(1.8) is visible.

1.3 Gravity lens critical test for gravity constants and

dark sector

High precision tests of the General Relativity (GR) and of its weak- and strong-field limits,

along with of modified gravity models have gained new content with establishing of the

dominating dark sector of the Universe. The models proposed to describe the dark energy

and dark matter observations are being constrained by means of those tests. The weak-field

General Relativity is continuously being tested in ever increasing accuracy [64, 65] including
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the frame-dragging measurements with laser ranging satellites [60].

The use of the strong gravity lens ESO 325-G004 [66] demonstrates the efficiency of the

lens studies to constrain the weak-field GR in the intergalactic scales. Given the increasing

accuracy and statistics of the gravity lensing observations (e.g. [67]), those studies can

become laboratories to test GR modifications along with the structure and dynamics of the

dark matter dominated configurations.

The idea of our approach to this problem is the following. In recent studies [40, 39] we

have shown that the Newton theorem on the identity of the gravity of a sphere and of a

point mass located in its center provides a natural way for the weak-field modification of

GR. Consequently, the constant Λ appears both in the cosmological solutions describing the

accelerated expansion and at galactic halo scales (cf. [62]) as weak-field GR thus linking

dark energy and galactic scales.

Here we predict a critical value for the parameter of the parametrized post-Newtonian

(PPN) formalism [65] γ = 0.998 (normalized to given lens mass and light impact distance)

which if observed at gravity lenses with proper significance will, for the first time, reveal the

weak-field modification of GR differing from conventional Newtonian limit. It is important

that the critical γ does not depend on any open parameter but involves only the fundamental

constants and well measured quantities.

1.3.1 Newton’s theorem and gravity lensing with Λ

In [40] it is shown that from the Newton’s theorem the weak-field limit of GR follows involving

the cosmological constant Λ, so that the metric tensor components have the form

g00 = 1− 2Gm

rc2
− Λr2

3
; grr = (1− 2Gm

rc2
− Λr2

3
)−1. (1.9)
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While this metric (Schwarzschild – de Sitter) was obviously known before (e.g. [68, 54]),

with the Λ introduced by Einstein to get a static cosmological model, the motivation based

on the Newton’s theorem essentially differs from that and ensures the Newton’s potential

with Λ term as the weak-field limit of GR.

Namely, as follows from the consideration of the general function for the force satisfying

Newton’s theorem on the identity of sphere’s gravity and that of a point of the sphere’s mass

situated in its center. That function besides the r−2 term contains also a second term [38]

f(r) = Ar−2 + Λr. (1.10)

When the modified Newtonian law (for the potential) is taken as weak-field limit of GR, one

has the constant Λ as a second gravity constant along with the classical Newtonian constant

G [40]. Thus, the second constant acts as cosmological constant in the solutions of Einstein

equations, at the same time enters the low-energy limit of GR.

Turning to the strong lensing and following [66], it is convenient to deal with the param-

eter representing the ratio

γ = Ψ/Φ (1.11)

of the two perturbing functions - of the Newtonian potential Φ and curvature potential Ψ -

entering the weak field metric

ds2 = (1 + 2Φ)c2dt2 − (1− 2Ψ)dr2 − r2dΩ2. (1.12)

For GR γ = 1, obviously.

In the weak-field limit of GR following from the Newton’s theorem Eq.(3.33) [39, 40], we

obtain

Φ = Ψ = −GM
rc2
− Λr2

6
. (1.13)
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To find out γ the authors of [66] introduced the lense dynamical mass

Mdyn =
1 + γ

2
M, (1.14)

where consequently the light bending angle in the vicinity of a mass of surface density Σ is

achieved is:

α =
2G(1 + γ)

c2

∫
d2x′Σ(x′)

x− x′

|x− x′|2
. (1.15)

Upon the analysis of the observational data of ESO 325-G004 they finally obtain the value

γ ' 0.97± 0.09.

Now, within our approach of the weak field metric Eq.(3.33) the bending angle will be

[69]

α =
4GM

c2r
− Λc2r3

6GM
. (1.16)

Here, important difference arises between Newtonian and Λ-modified case. Namely, the

authors in [66] have obtained

α = 2(1 + γ)
GM

c2r
. (1.17)

Comparing this with Eq.(8), we get for the γ-parameter

γ = 1− Λc4r4

12G2M2
. (1.18)

Inserting the current value of the cosmological constant e.g. that of the Planck satellite [16]

Λ = 1.11× 10−52m−2 we obtain

γcr = 1− 0.002 = 0.998 (
M

1.5 1011M�
)−2(

r

2 kpc
)4, (1.19)

where the data of [66, 70] for ESO 325-G004, i.e. the Einstein radius and the estimated

mass inside that radius, were used for the normalization. Obviously, the normalization and
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hence the precise numerical value of γcr will vary from one lens to another, and the principal

point is the existence of a well defined parameter enabling to reveal the weak-field limit of

GR with the lensing effect.

The other key point of using ESO 325-G004 is that, within other available observational

means it is technically impossible to detect the contribution of Λ term in the gravitational

lensing. For example, for the same effect within the Solar System the value of γcr will be

approximately (1- 9.6 × 10−25). Note, that a limitation on γ also will emerge due to the

proper motion of the lens for it affects the measured value of γ as shown in [71].

1.4 The invalidity of “negative mass” description of

the dark sector

The paper [75] aimed to describe the nature of dark sector in a unified model, where the

author’s essential new notion is the “negative mass”. That approach is already criticized in

[76]. Since, the “negative mass” concept was publicized in media as a new theory to explain

the “missing” part of cosmos (e.g. https://phys.org/news/2018-12-universe-theory-percent-

cosmos.html), we will outline the shortcomings of that approach.

First, the author claims that by considering the negative cosmological constant Λ in GR

equations as the “negative mass” from one side, and in the modified Newtonian equation

from the other side, it is possible to solve both the dark matter and dark energy problems,

simultaneously. To do that, the author writes the equations of GR in the form

Gµν =
8πG

c4
(T+

µν + T−µν + Cµν), (1.20)

where according to the author “... the conventional Λgµν term is now represented by a

combination of T−µν (an exotic matter term) and Cµν (a modified gravity term)”. So, in order
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to explain the accelerated expansion of the universe, the author replaces the notion of positive

cosmological constant Λ with a new term in the right hand side of the field equations above.

This is severe misunderstanding of GR since the author’s statement entirely rejects the very

essence of Einstein equations as explained in any textbook! (See e.g. the strong critics by

t’Hooft [77] of such attempts to interpret the Einstein equations). That very essence of

Einstein equations has been triumphantly confirmed by now experimentally, it is enough to

mention the discovery of gravitational waves [78] and the frame dragging measurements [60],

testing the strong and weak-field GR, respectively.

Second, in the Newtonian regime, the author obtains the following relation for the grav-

itational force exerted on a particle of mass m

mv2

r
=
GMm

r2
− Λc2rm

3
. (1.21)

To ensure the “negative mass” as the “missing matter” in galaxies i.e. to ensure flat rotation

curves, the author claims that the negative cosmological constant has to be

Λ ' −0.3× 10−52m−2.

This contradicts a variety of observational data including the SN surveys, CMB, lensing etc

when interpreted via cosmological constant and GR. Namely, the observations indicate the

positive Λ and fix its value Λ ' +1.1× 10−52m−2, as of the Planck data [16]. Furthermore,

with the negative value of Λ there will be in contradiction with the gravitational potential

Φ = −GM
r
− Λc2r2

6
, (1.22)

which is equally important on introducing the notion of “missing matter”. In fact, it should

be noticed that there are two main analyses for the existence of dark matter i.e. of the “virial

22



theorem” and the “flat rotation curves”. Historically, the concept of “missing matter” was

introduced by Zwicky [85] using the virial theorem. Decades later this concept was used to

describe the “flatness” of galactic rotation curves [15]. In contrast to virial analysis where

the gravitational potential is used, to study the rotation curves of galaxies one uses the

gravitational force and there is an important difference between those analyses. Namely, if

one considers the additional Λ-term in Eq.(1.22), then the Λ-term will correspond to “mass”

term in Eq.(1.22) with density

ρ =
Λc2

8πG
. (1.23)

While for Eq.(1.21), in view of Fg = mEg = −m∇Φ, the sign of Λ-term changes and it

should be interpreted as “negative mass” of

ρ = − Λc2

4πG
. (1.24)

In [75] to solve the dark matter problem the author has focused only on the “rotation

curve” analysis based on Eq.(1.21) and has claimed that considering the “negative mass”

defined via the negative Λ it is possible to have flat rotation curves for galaxies. In fact,

although it will act to flatten the rotation curves, the negative Λ term cannot explain the

other main analysis i.e. of the “virial theorem” [79]. Indeed, in such case the Λ-term in the

gravitational potential will become positive

Φ = −GM
r

+
|Λ|c2r2

6
, (1.25)

where |Λ| is the absolute value of the cosmological constant. Consequently, for the virial

theorem the “negative mass” not only will not help but even will decrease the amount of

necessary mass to have a virialized configuration.
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Thus, what the author calls a “unifying theory” for dark energy and dark matter via

negative value of Λ actually is just a matter of reparametrization of Λ, c and G based on Eq.

(1.21) (cf. [64]), which has its own theoretical and observational constraints, as it is clear

comparing Eq.(1.23) with Eq.(1.24) and recalling that both the sign and the value of Λ are

confirmed by various observations.

Third, the author claims that Anti de Sitter (AdS) universe undergoes a cycle of expan-

sion and contraction with a timescale of

√
−3π2

Λc2
,

where the author states that “...a universe with a negative cosmological constant would

eventually recollapse due to this extra attractive force”. However, negative cosmological

constant is neither necessary nor sufficient condition to have a Big Bang/Big Crunch scenario

and AdS spacetime is totally unrelated to a collapsing universe and the negative Λ cannot

ensure any so-called “cyclic cosmology”, see e.g. [80].

Finally, let us mention that there is still a way to incorporate the cosmological constant

within Newtonian gravity without rejecting basic principles and observations, namely via

Newton theorem on the equivalency of attractions of a sphere and a point mass. The latter

leads to the modification of the weak-field limit of GR as follows [40, 43]

g00 = 1− 2Gm

rc2
− Λr2

3
; grr = (1− 2Gm

rc2
− Λr2

3
)−1. (1.26)

Then, the cosmological constant not only enters naturally in the gravity equations, both

Newtonian and GR, but also enables one to describe via the observed value of the cosmo-

logical constant the common nature of the dark sector, without any need to change the sign

of Λ.
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1.5 Conclusions

In this chapter we demonstrated a natural way for the appearance of the cosmological con-

stant in Einstein equations. This follows while adopting for the weak field approximation of

General Relativity the Eq.(1.3) as the general function satisfying the Newton’s theorem of

1687, that the gravitating sphere acts as a point mass located in its center. This drastically

differs from Einstein’s original motivation for the introduction of the cosmological constant.

This approach enables to draw the following conclusions:

(a) the nature of the dark matter in galaxies is in the gravity;

(b) the dark energy (cosmological constant) and the dark matter are of the common

nature;

(c) the dark matter is the signature of repulsive gravity of the ordinary matter determined

by Λ constant and dominating at large scales, i.e. larger than of galactic halos.

Thus, the key constituents of the dark universe are naturally linked here. The repulsive

gravity nature of the dark matter is responsible for the observed increase of the mass-to-

luminosity M/L ratio while moving from the scales of galaxies to those of galaxy clusters.

The non-force-free shell (galactic halo) determines the internal structures of galaxies (disks),

as indicate the observations. The observational data of a sample of galaxy groups [59], i.e.

systems containing 3 or more galaxies, are shown to confirm Eq.(1.8) on the Λ-nature of the

dark matter.

Obviously, far more consequences of this modified GR, i.e. with weak-field of Eq.(1.3),

are of interest regarding the experimental and theoretical aspects. The current experimental

tests for GR, including the recent 5% accuracy for the Lense-Thirring effect obtained via the

LARES satellite [60], are obviously far from detecting the potential contribution of the Λ-

term in GR. However, the observations of black holes and pulsars including the detections of

gravitational waves via LIGO [61], on the one hand, and of galactic halos (e.g. [62]), dynamics

of galaxy groups and clusters for weak-field gravity, on the other hand, can provide efficient
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tests. Then, the cosmological constant determines not only expansion of the Universe but

also the weak-field gravity and even possibly is linked to the arrow of time [63]. The modified

GR reveals also the obvious link to the AdS/CFT correspondence, since instead of Poincare

group now one has a SO(2,3) group. Further consequences of this approach are in [40, 41].

Meantime, the accurate measurements of strong lensing of extragalactic objects provide

important means for the study of profound cosmological problems. The recent study of the

lensed object ESO 325-G004 [66] (cf. previous studies [67, 72, 73]) enables a remarkable

testing of General Relativity in extragalactic scales. The observational surveys of lensing

will definitely proceed further with ever increasing precision and statistics which will enable

to improve the available accuracy of the value of the weak-field parameter γ.

In view of that, here we derive a critical γcr for the strong lensing of extragalactic objects

which can be informative for gravity theories. It is remarkable that, γcr does not depend

on any hypothetical parameter of modified gravity models (coupling constant, scalar field

mass, etc) but is determined entirely by measured physical quantities. Since the needed

accuracy for measuring of γcr seems not principally unreachable given the variability range

of the lense mass and light impact scale, due to γcr the gravity lens measurements will get

similar importance as the renown Solar eclipse of 1919 which enabled to distinguish GR from

the classical Newtonian gravity. Thus, for the first time the detection of a discrepancy with

the conventional General Relativity can become feasible, with further intriguing relation

to dark sector. While the breakthrough study [66] reveals the possibility of obtaining of

γ, the observations of more distant objects and hence the needed accuracy for γ certainly

is a matter of future advances; however, let us recall the classical example, i.e. Einstein’s

scepticism as regards observing gravitational lenses [74].

Finally we discussed the possible shortcomings of “negative mass” approach. It should

be noticed that before [75], there have been other attempts to use negative cosmological

constant for flatness of rotation curve too (for example see [81]). However, for all such cases
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including “negative mass” approach, the results contradict basic physics and a bunch of

observational data.
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Chapter 2

Cosmological Constant as a

Fundamental Constant

2.1 Introduction

In this chapter, we continue our investigation regarding the “Newton Theorem”. Namely,

based on the group theoretical analysis, we show that how the cosmological constant Λ

introduced by Einstein according to principles of GR will be identified as the linear term of

“Newton Theorem”’s most general function. In this sense, we conclude that Λ is the second

fundamental constant of gravity. Then, we study the further consequences of Λ as one of

the fundamental constant of Nature. The results of this chapter have been published in [40]

and [43].

2.2 Two fundamental constants of gravity unifying dark

matter and dark energy

The discovery of the dark sector as a dominant constituent of the Universe is one of outstand-

ing recent astrophysical achievements and continues to be a key puzzle for physical theories.
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Various modifications of the Newtonian gravity and of GR are being actively considered in

that context.

Among the possible approaches to the modified gravity, including GR, is the one based

on a theorem proved by Newton in “Principia” on the equivalence of the gravity of sphere

and that of a point mass located in its center. The principal importance of that theorem was

obvious, since the motion of the planets which were spheres and not point masses, could be

considered explained by gravity law only upon the proof of that theorem. Now, it appears

that this theorem provides a two-step path to modified gravity theories and directly to the

dark sector problem [38, 39]:

1. The general function satisfying that theorem provides an additional term containing

a constant and thus modifying the Newtonian gravity;

2. That modified Newtonian gravity leads to a modified GR with the former as its

weak-field limit.

So, the modified GR has to initially include that additional constant, along with the

gravitational constant. As shown in [38, 39] that additional constant entering both the mod-

ified Newtonian gravity and GR enables to describe by its sign and quantitative value both

the dark matter and the dark energy. That constant appears to be the renown cosmological

constant which was introduced by Einstein [5] in order to have static solutions to Einstein

equations.

The fact that the two constants of the gravitational interaction are able to describe self-

consistently, i.e. without postulation of additional scalar or other fields, the dark matter and

dark energy, reveals their unified, gravitational nature. Namely, the dark matter appears as

a result of pure gravitational interaction, but with a law containing the additional constant.

We analyze this approach and reveal the role of that additional universal physical constant

in the classical and relativistic gravities. The consequences of this approach can have direct

impact on the strategy of the observational studies of the dark energy and the search of the
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dark matter.

2.2.1 Newton’s theorem and General Relativity

The general function to satisfy the Newton’s theorem that a sphere acts as a point-mass

located in its center has the following form for the force [38]

f(r) = C1r
−2 + C2r, (2.1)

where C1 and C2 are constants and f(r) is the solution of equation

r2

2
f ′′(r) + rf ′(r)− f(r) = 0. (2.2)

Thus, one can conclude that according to Newton theorem the gravitational force should

contain two terms i.e. an inversed square term and a linear one.

Considering the original formulation of gravity by Newton himself, it becomes clear that

the constant C1 is written as C1 = Gm2, i.e. with the familiar gravitational constant G and

mass m, the latter entering also the law of mechanics. In this sense, the Newtonian gravity

can be regarded as a very special case i.e. C2 = 0 of all possible forms of gravitational fields

where one can consider spherical objects as points. Furthermore it should be noticed that,

Newton himself did not consider the most general form of the force before formulation of

his theory of gravity, although he proved that in the context of his theory it is possible to

consider spheres as points.

In this context the presence of a linear term was forgotten for hundreds of years until the

formulation of GR and introduction of cosmological constant Λ

Gµν + Λgµν = κTµν . (2.3)

30



After that it became obvious that, by considering the Λ, as introduced above, the GR’s

weak field limit will contain an additional linear term. In this sense the metric tensor

components for the sphere’s gravity in the weak-field limit will be

g00 = 1− 2Gm

rc2
− Λr2

3
; grr = 1 +

2Gm

rc2
+

Λr2

3
. (2.4)

So, one can conclude that although for the first time the existence of Λ was proposed

by Einstein in the context of GR [13], it would be possible to find the full GR equations

(Eq.(2.3)), if Newton had considered both terms and formulated his theory based on Eq.(2.1).

In this sense, by considering the Newton’s principle and the most general form of the force,

the cosmological term appears in Einstein’s equations not by principles of GR, but as the

second linear term of Newtonian gravity.

It should be noticed that, although Eq.(2.4) has been considered previously in different

contexts (e.g. [13] and [52] and references therein), the approach of [38],[39] from the roots

of Newtonian gravity/GR provides an insight to the unified nature of the dark matter and

the dark energy. Namely, the presence of Λ as an additional linear term in Newtonian regime

i.e. Eq.(4) enables one to describe the dark matter in galaxies, as the cosmological constant

in GR describes the dark energy, and as shown in [39] both values of Λ, i.e. those describing

the dark matter and dark energy (cosmological constant) quantitatively agree with each

other. In the case of the dark matter, it is of principal importance since Eq.(2.1) describes

a non-force-free field inside a shell except its center, while for Newtonian law the force-free

field is entirely inside the shell. This fact agrees with the observational evidence that the

galactic halos determine the properties of galactic disks [55].
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Table 2.1: Background geometries for vacuum solutions

Sign Spacetime Isometry Group Curvature
Λ > 0 de Sitter (dS) O(1,4) +
Λ = 0 Minkowski (M) IO(1,3) 0
Λ < 0 Anti de Sitter (AdS) O(2,3) -

2.2.2 Group-theoretical analysis of Newton’s theorem

In previous section we have shown that, it is possible to justify the existence of second term

in Eq.(2.1) as the weak-field limit of GR equations written with Λ. However, as mentioned

above Λ was introduced not by Newton’s theorem but according to conservation of Energy-

Momentum tensor and the fact that ∂µgµν = 0. So it seems quite reasonable that, to make a

more powerful justification, we try to infer the Newton’s theorem based on above relativistic

considerations. Thus we turn to the isometry groups.

In Eq.(2.3), depending on Λ’s sign - positive, negative or zero - one has three different

vacuum solutions (three different asymptotic limits) for the field equations as shown in Table

2.1.

The interesting feature of all these 4-dim maximally symmetric Lorentzian geometries is

that, for all of them the stabilizer subgroup of isometry group is the Lorentz group O(1,3).

This means that at each point of all these spacetimes, one has an exact Lorentz symmetry.

Since O(1,3) is the group of orthogonal transformations, one can conclude that all above

spacetimes possess spherical symmetry (in Lorentzian sense) at each point. Speaking in

terms of geometry, for above three spacetimes we have

dS =
O(1, 4)

O(1, 3)
, M =

IO(1, 3)

O(1, 3)
, AdS =

O(2, 3)

O(1, 3)
. (2.5)

It is clear that in non-relativistic limit the full Poincare group IO(1,3) is reduced to Galilei

group Gal(4)=(O(3)×R)nR6, which is the action of O(3)×R (as the direct product of spatial

orthogonal transformations and of time translation) on group of boosts and spatial transla-
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Table 2.2: 3D Background Geometries with O(3) as the stabilizer

Spacetime Isometry Group Curvature
Spherical O(4) +
Euclidean E(3) 0
Hyperbolic O+(1,3) -

tions R6. In the same way one can find the non-relativistic limit of O(1,4) and O(2,3) groups

O(1, 4)→ (O(3)×O(1, 1)) nR6, O(2, 3)→ (O(3)×O(2)) nR6. (2.6)

Furthermore, considering the fact that the Galilei spacetime is achieved via quotienting

Gal(4) by O(3)nR3 (the group generated by orthogonal transformations and boosts), one

can continue the analogy and find the so-called Newton-Hooke NH(4)± spacetimes by same

quotient group but now for groups of Eq.(2.6) (see [82][83][84]). In this sense, depending

on the sign of Λ, we can not only find the general form of the Newtonian modified gravity

(according to section 2), but also the non-relativistic background geometries of the Lorentzian

spacetimes in Table 2.1 and their symmetries.

To complete the proof, one has to check whether it is possible to apply the Newton’s

theorem to these spacetimes or not. As stated above, to apply the gravity law to planets

(spheres) Newton considered them as points. Speaking in terms of mathematics it means

that at each point one should have O(3) symmetry. This statement is similar to what

we showed for 4-dim geometries of Table 2.1 and the Lorentz group O(1,3). The possible

3-geometries with such property are listed in Table 2.2.

Recalling that for non-relativistic theories we have two absolute notions of space and time

geometry (in contrast to relativistic theories where space and time are unified in spacetime

geometry), the last step is to check whether the spatial geometry of two NH(4)± spacetimes,

as well as the Galilei spacetime are equal to one of the geometries mentioned in Table 2.2 or

not. There are several ways to check this statement, however the most straightforward one is
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to check the algebraic structure of spatial geometry. Recalling the fact that for both NH(4)±

spacetimes and Galilei spacetime the spatial algebra is identical and equal to Euclidean

algebra E(3)=R3o O(3), we can conclude that for all above spacetimes we have an exact

O(3) symmetry at each point of spatial geometry. In this sense we will arrive at Newton’s

theorem based on group theoretical analysis of GR equations.

2.2.3 Newton’s theorem in d-dimensions

To throw more light on the constant Λ we consider the higher dimensional cases which simply

means that the gravitational field defined on Sd−1 should be equal to that defined for a single

point at d-dimensional space. For the potential one has

∆Sd−1Φ = C1, (2.7)

where ∆Sd−1 denotes the Laplace operator defined on Sd−1 and the constant C1 defines the

mathematical feature of geometrical point. Now due to spherical symmetry we can write

1

rd−1
(
d

dr
rd−1 d

dr
Φ) = C1. (2.8)

So the most general form of the gravitational potential Φ of sphere in d-dimensional case

according to Newton’s theorem is

Φ(r) = C1
r2

2d
+

C2

(d− 2)rd−2
. (2.9)

In this equation C1 is the constant of Eq.(2.7) and the constant C2 arises during solving

the equation. Note, that for d = 2 the second term becomes logarithmic but the first one

remains unchanged.

The potential Φ in Eq.(2.9) at d = 3 is not only in full agreement with Eq.(2.1), but also
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leads to further insights. One can identify the C1 in Eq.(2.9) with the Λ-constant at the

d-dim generalization of ordinary Newtonian gravity,

Φ(r) = −GdM

rd−2
− Λc2r2

2d
, (2.10)

where Gd indicates the d-dimensional gravitational constant.

Note a remarkable fact: comparing the two constants - the gravitational constant G

and the Λ - one can see their essential difference. Namely, the gravitational constant G

is dimensional-dependent and couples to matter, while Λ is neither dimensional-dependent

nor matter-coupled. Such universality of Λ can be considered as fitting its vacuum content

noticed by Zeldovich from completely different principles [85].

So, the gravity has not one, but two fundamental constants - G and Λ - and the second one

(cosmological constant) is more universal (dimensional-independent) than the gravitational

constant! The two constants together are able to explain quantitatively the dark energy and

the dark matter [39].

Then, the metric component of d+ 1 dimensional spacetime is

g00 = 1 +
2Φ

c2
. (2.11)

From the d-dimensional Gauss’s law

∆Φ =
2π

d
2

Γ(d
2
)
Gdρ− Λc2, (2.12)

where ρ is the d-dimensional density of matter. Consequently one gets the Einstein constant

κd =
4π

d
2

Γ(d
2
)

Gd

c4
. (2.13)

This completes the generalization of Newton’s theorem to arbitrary dimension and its cor-
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respondence to classical and relativistic theories of gravity.

Then, for the 3 possible maximally symmetric (d+ 1)-dimensional spacetimes defined by

the value of Λ one has the following geometries

dSd+1 =
O(1, d+ 1)

O(1, d)
, Md+1 =

IO(1, d)

O(1, d)
, AdSd+1 =

O(2, d)

O(1, d)
, (2.14)

as the generalizations of Eq.(2.5); for d = 3 one easily recovers the 4-dimensional results.

It is clear that in such case, irrespective which geometrical spacetime is considered, one has

exact O(1,d) symmetry at each point, which in it’s turn indicates the existence of spherical

symmetry of Lorentzian geometry for all points. Fixing the relativistic geometries and

symmetries one easily finds their non-relativistic limits

O(1, d+1)→ (O(d)×O(1, 1))nR2d, O(2, d)→ (O(d)×O(2))nR2d, IO(1, d)→ (O(d)×R)nR2d.

(2.15)

As in section 3, one can find the non-relativistic background geometries for each case by quo-

tienting O(d)n Rd for all three symmetric groups. The resulting spacetimes are Gal(d+1),

NH+(d+1), NH−(d+1), and clearly at d = 3 one obtains the classical spacetimes. As we

have mentioned earlier, the interesting feature of these non-relativistic geometries is the fact

that, in contrast to relativistic case they are not metric geometries because they do not

admit single metric structure and their properties can be studied via corresponding affine

connection. Furthermore from geometrical point of view, for all these three cases the spatial

geometry seems to be Euclidean and the pure spatial algebra is equal to Euclidean algebra

E(d). Then, since E(d)=Rdo O(d), one easily concludes that in the spatial geometry the

O(d) is the stabilizer group, which in it’s turn means that all points can be considered as

d-dimensional spheres Sd−1. This proves that for all these three geometries the Newton’s

theorem is hold. However, as mentioned above, the spatial part of all three geometries is

equal to each other and the question is, how Λ affects these geometries. The answer be-
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comes clear if one considers the temporal parts of Eq.(2.15). Indeed, the sign of Λ indicates

that we are living either in oscillating NH(d+1)−, flat Gal(d+1) or expanding NH(d+1)+

universe. One can also check that for all these cases, depending on the sign and the value

of Λ, the affine connection can be flat, for Gal(d+1) case, and either positive or negative for

NH(d+1)+ and NH(d+1)−, respectively.

To conclude this brief but principal discussion, we write down the d-dimensional (d 6= 2)

Schwarzschild metric for non-zero Λ

ds2 = (1− 2GdM

rd−2c2
− Λr2

3
)c2dt2 − (1− 2GdM

rd−2c2
− Λr2

3
)−1dr2 − r2dΩ2

d−1. (2.16)

Although d-dimensional cases have been considered before, our approach to GR and its weak-

field limit justifies the consideration of point-like dynamics for higher dimensional spheres

based on Newton’s original theorem.

Thus, according to our analysis:

1. Gravity has not one but two fundamental constants, the gravitational constant G

and an additional one, Λ, which appears readily in General Relativity with weak-field limit

as modified Newtonian gravity. Moreover, the Λ-constant (the cosmological constant) is

dimensional-independent and matter-uncoupled and hence can be considered as even more

universal than the gravitational constant G;

2. The Λ-constant of gravity emerges from Newton’s theorem on the identity of the

sphere’s gravity and that of the point-mass located in its center;

3. Both constants, G and Λ, jointly are able to explain quantitatively the dark energy

and the dark matter [39], which hence appear as gravity effects.

Also, the AdS spacetime of AdS/QFT emerges here readily from the genuine structure of

classical and relativistic gravities. Positive Λ-constant is an essential condition in Conformal

Cyclic Cosmology [86, 87].

The accuracy of the current tests of GR (e.g. [60]) are still far to probe the modified
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gravity discussed above, however, for example, the astronomical observations of galactic

halos [62] can be efficient in testing the predictions regarding the dark matter nature.

2.3 Cosmological constant as a fundamental constant

The cosmological constant as a universal constant was mentioned by Einstein [5, 88] when

he introduced it to describe a static cosmological model but later abandoned it. In the

recent study [40] we have shown that the cosmological constant Λ does possess properties

of a second physical constant, along with the gravitational one G, both for the General

Relativity and the Newtonian gravity as its low-energy limit. That follows from the Newton

theorem on the equivalency of gravity of a sphere and of a point-mass located in its center

(see [39]), i.e. the motivation of emergence of Λ is entirely different from that of the static

universe. The Λ-constant was shown to be dimension-independent and matter uncoupled and

therefore even more universal than the gravitational constant [40]. That approach enables

one to describe the dark matter and the dark energy as possessing common nature [38].

Here we discuss further consequences for Λ joining the set of fundamental constants

G, c, ~, the gravitational (Newton) constant, speed of light and Planck constant, respectively;

for detailed discussion of constants see [89].

The consideration of Λ together with the 3 constants affects the issue of Planck units.

Planck [16] denoted the latter as natural units since they “retain their meaning for all

times and for all cultures, even extraterrestrial and non-human ones”. We show that Λ

together with the Planck units leads to emergence of a dimensionless constant, also relevant

for “all cultures”, which in cosmological context acts as scaling for information. Among

the consequences is that, a rescaling of values of the 3 fundamental physical constants will

be allowed from one aeon to another aeon within the Conformal Cyclic Cosmology (CCC)

[86, 87]; the rescaling satisfies a dimensionless relation and possess group symmetry.
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2.3.1 The 4 units and information

The set of (3+1) constants and their units looks as

[c] = LT−1, [G] = M−1L3T−2, [~] = ML2T−1, [Λ] = L−2, (2.17)

where L, T and M stand for dimensionality of length, time and mass, respectively. The

most general combinations of these constants can be represented in the form

[cn1Λn2Gn3~n4 ] = Ln1−2n2+3n3+2n4T−n1−2n3−n4M−n3+n4 . (2.18)

From here, two consequences follow readily.

First, for the set (G,Λ, c, ~) the corresponding algebraic equation has no unique solution

and hence no units can be defined by these 4 constants, as distinct of the case of (G, c, ~)

leading to Planck units.

Second, the following dimensionless quantity (constant) does emerge

I =
c3a

ΛaGa~a
, (2.19)

where a is a real number. In contrast, no dimensionless quantity was possible to construct

from the 3-set (G, c, ~). This difference, as we show below, can have consequences for the

CCC.

Note, that for a = 1 in (2.19) one has I ' 3.4×10121, which obviously reflects the renown

cosmological constant value problem.

The relation of the 4 constants in (2.19), except for a numerical factor, for a = 1 coincides

with that of the information (or entropy, with the Boltzmann constant) of de Sitter event

horizon [91, 92, 86]

IdS = 3π
c3

ΛG~
. (2.20)
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This relation emerges also from the Bekenstein Bound [93] written for the information in de

Sitter space

IBB =
3πc3

ΛG~ln2
. (2.21)

One may expect emergence in future of this same dimensionless relation of the 4 constants

from other backgrounds or motivations.

The coincidence of IDS and IBB i.e. ∆IdS = 0, reflects that there is no information

(entropy, thermodynamical) time evolution in de Sitter manifold. In the next section we

will study the possible link between this statment and symmetries of manifolds with more

details.

The importance of Newton theorem lies also on the fact that it enables one to generalize

the “sphere-point” equivalence idea to higher dimensions. In those cases, of course we have

hyperspheres Sd−1, where d is the dimensionality of space. Then, according to [40], for

gravitational potential (d≥3) we have

Φ(r) = −GdM

rd−2
− Λc2r2

2d
. (2.22)

As a consequence, the Newton gravitational constant becomes dimension-dependent and for

four constants we have

[c] = LT−1, [Gd] = M−1LdT−2, [~] = ML2T−1, [Λ] = L−2, (2.23)

Then, the dimensionless quantity is obtained as

Id =
c3a

Ga
d~aΛa d−1

2

, a ∈ R, (2.24)

obviously, for d = 3 we recover Eq.(2.19).

Since the information is related to the area of (d-1)-dimensional hypersurface, the Beken-
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stein’s “elementary particle” has an area

dπ
d
2
−1

Γ(d
2

+ 1)

Gd~
c3

, (2.25)

and the evolution of the universe ends at de Sitter phase at corresponding maximum infor-

mation

IdS =
c3

Gd~Λ
d−1
2

d
d−1
2 π bits. (2.26)

2.3.2 Information, time evolution and Weyl principle

As shown above, upon introducing Λ as one of fundamental constants the notions of lp,

mp and tp as ordinary natural units, disappear. However, within Bekenstein’s “elementary

particle” [91] approach, one can consider Planck units as composing one bit of information.

Namely, one bit of information is attributed to 4l2p, so that in expanding universe upon the

increase of the surface area more information is created. Creation of information continues

until in de Sitter (dS) phase IdS-th bit is created.

Thus the time evolution of the universe is reduced to discretized steps

T = {1, 2, 3, ...., IdS} . (2.27)

Such description based on creation of information, naturally, imposes a temporal order.

Note, that for de Sitter (dS) universe where ∆IdS = 0, we have time-translational symmetry

T(t) as the subgroup of isometry group O(1,4). Thus it seems that, there might be a link

between the T(t) group and evolution of universe based on information.

In non-relativistic limit the geometry of universe is considered as Galilean spacetime,

which has 10-parameter symmetry group Gal(4), where time translations T(t) make a sub-

group of Gal(4). This is also true at non-zero cosmological constant case, where the symmetry

groups are NH±(4) as shown in Table 2.3. Meantime, for each case it is easy to show that
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Table 2.3: Non-Relativistic Background Geometries

Sign Geometry Symmetry Group T(t) Relativistic
limit

Λ > 0 Newton-Hooke NH+(4)=(O(3) × O(1,1)) n R6 O(1,1) de Sitter
Λ = 0 Galileo Gal(4)=(O(3) × R) n R6 R Minkowski
Λ < 0 Newton-Hooke NH−(4)=(O(3) × O(2) ) n R6 O(2) Anti de Sitter

Table 2.4: Spatial Geometries

Space Symmetry Group Curvature
Spherical: S3 O(4) +
Euclidean: R3 E(3) 0
Hyperbolic: H3 O+(1, 3) -

there are non-relativistic limits of following groups

O(1, 4)→ (O(3)×O(1, 1))nR6, O(2, 3)→ (O(3)×O(2))nR6, IO(1, 3)→ (O(3)×R)nR6,

(2.28)

where clearly there is again time-translational symmetry. This implies that it is not pos-

sible to fix a preferred direction of time based only on symmetrical features of background

geometries for both relativistic and non-relativistic ones.

At the same time, following [40], the sphere-point identity implies that, at each point of

background geometry (spatial), we have O(3) symmetry. As in all of these non-relativistic

geometries the spatial algebra is Euclidean E(3)=O(3)n R3, the Newton theorem is valid.

Thus, by considering Newton theorem and information theoretic evolution of universe

simultaneously, it becomes clear that although the geometry initially during the creation

of information does not posses T(t) symmetry group, O(3) is the stabilizer of the spatial

geometry. All possible 3-geometries with O(3) as the stabilizer are listed in Table 2.4.

In relativistic cosmology the background geometry i.e. the Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric is fixed by “Weyl principle” which assumes that at any moment of
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time the universe is homogeneous and isotropic

ds2 = c2dt2 − a(t)2dΣ2, (2.29)

where Σ is one of geometries listed in Table 2.4. Within the approach presented above,

“Weyl principle” becomes not just a matter of simplification, but a condition to have gravity

satisfying Newton theorem, on one side, and enabling information theoretical consideration,

on the other side.

2.3.3 CCC: rescaling of physical constants

The key elements of CCC are the Second law of thermodynamics and the positive Λ [86].

That naturally implies the involvement of physical constants and Planck units through the

concepts of entropy and information. Namely, within CCC the initial point of each aeon

corresponds to vanishing of Weyl tensor, C = 0, and then the evolution of each aeon is

completed by de Sitter expansion. The re-set of entropy at the conformal boundary of aeons

is reached by the loss of information in massive black holes situated in galactic centers and

Hawking evaporation.

Since the expressions defined by 4 constants (2.19) are dimensionless numbers, they are

transformed identically from one aeon to another (regarding the information transfer to the

next aeon see [94]), as invariants with respect to conformal transformation

g̃µν = Ω2gµν . (2.30)

Namely, the ratio

QdS

Qp

= m(
c3

~GΛ
)n = mIn, m, n ∈ R (2.31)

of all physical quantities {Q} in final (de Sitter) and initial (Planck) eras of an aeon will
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remain invariant under conformal transformations.

However, the invariance of mIn does not imply the invariance of each of 4 constants

involved. In other words, the constants can be rescaled from one aeon to another

c→ a1c, ~→ a2~, G→ a3G, Λ→ a4Λ, ai ∈ R+, (2.32)

keeping satisfied the condition

a3
1

a2a3a4

= 1, (2.33)

From here we arrive at the conclusion that, the constants’ transformations in an aeon are

invariant under the following group

S =





a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44


, det|S| = 1, a11 = a3

1, a22 = a−1
2 , a33 = a−1

3 , a44 = a−1
4


.

(2.34)

This means that, the subsequent aeons can possess rescaling of constants c, ~, G,Λ and of

Qi keeping invariant the dynamics of an aeon.

Thus, the yet unknown “Master Equation” of the universe has to admit the S group’s

symmetry.

Then, in view of the relation (2.31) we see that there is a noted difference between the role

of Λ and of other constants. In fact, since the Λ is absent in Planck era scales, by fixing Λ’s

value, the values of physical quantities (up to possible combination of other constants) QdS

are fixed. This property is possessed only by Λ, since fixing any of the rest three constants

does not define either the initial or final stages of an aeon. If so, one can rewrite the group
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S as follows

S =


q11 0

0 q22

, qii ∈ R+, det|S| = 1

 , (2.35)

where in this case, q11 = a11a22a33 and q22 = a44.

Thus, the expansion of an aeon starts at positive Λ and upon fixing its value, the values

of 3 physical constants c,G and ~ are fixed according to formula (2.19), i.e. allowing several

equivalent combinations satisfying the group S.

Note, a difference of the described information approach and the conventional one defining

the dynamics of the universe with Friedmannian equations. Those equations are solved

numerically for given input parameters with proper choice of time steps. Now, when Λ is

considered a universal constant and the notion of natural units for time, length and mass

disappear, we come to a dimensionless information and the dynamics of the universe is

reduced to discrete steps {1, 2, 3, ...., IdS}.

2.4 Conclusions

According to our analysis:

a) Gravity has not one but two fundamental constants, the gravitational constant G

and an additional one, Λ, which appears readily in General Relativity with weak-field limit

as modified Newtonian gravity. Moreover, the Λ-constant (the cosmological constant) is

dimensional-independent and matter-uncoupled and hence can be considered as even more

universal than the gravitational constant G;

b) The Λ-constant of gravity emerges from Newton’s theorem on the identity of the

sphere’s gravity and that of the point-mass located in its center;

c) Both constants, G and Λ, jointly are able to explain quantitatively the dark energy

and the dark matter [39], which hence appear as gravity effects.
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Also, the AdS spacetime of AdS/QFT emerges here readily from the genuine structure of

classical and relativistic gravities. Positive Λ-constant is an essential condition in Conformal

Cyclic Cosmology [86, 87].

The accuracy of the current tests of GR (e.g. [60]) are still far to probe the modified

gravity discussed above, however, for example, the astronomical observations of galactic

halos [62] can be efficient in testing the predictions regarding the dark matter nature.

On the other hand, the cosmological constant Λ, which as shown in [40], acts as a physical

constant defining the gravity, in combination with other fundamental constants leads to the

following principal conclusions:

a) the 4 constants no longer define a unique scaling for length, time and mass, as were

the Planck units for the 3 physical constants;

b) a dimensionless quantity (constant) is emerging composed of 4 constants G,Λ, c, ~ of

a transformation group symmetry which was not possible with 3 constants G, c, ~.

Starting from 1970s the notion of information as of dimensionless quantity was attributed

to event horizons [91, 92]. Now, as shown above, only together with Λ one can construct a

natural dimensionless quantity, to which within Bekenstein’s “elementary particle” approach

one can attribute information content.

Thus, Λ as universal constant approach, enables one to consider dynamics of the universe

as of (d+1)-dimensional Lorentzian geometry satisfying the following conditions:

• Newton theorem ensures O(d) symmetry at each point of d-dimensional spatial geom-

etry;

• The evolution intrinsically imposes “time ordering” as described by group theoretical

analysis;

• Evolution can be reduced to discrete increase of (dimensionless) information;

• Bekenstein’s “elementary particle” corresponds to an area dπ
d
2−1

Γ( d
2

+1)

Gd~
c3

;

• Evolution tends to de Sitter phase with information c3

Gd~Λ
d−1
2
d
d−1
2 π bits.
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The group properties of transformations involving the physical constants within the Con-

formal Cyclic Cosmology imply that, at any positive value of Λ at initial state of each aeon

the initial values of 3 physical constants will allow rescaling satisfying the dimensionless con-

straint. The rescaling of 4 fundamental constants will admit the same global cosmological

dynamics but with rescaled internal physics. This opens an entire arena for modifications for

physical processes and configurations from one aeon to another, since the values of physical

constants define such basic concepts as e.g. the atomic physics, the Chandrasekhar limit,

black hole collapse, etc.

The emergence of Λ as a physical constant in modified weak field limit of GR can be

tested via gravity lensing observations [41].
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Chapter 3

Λ-gravity and Observations

3.1 Introduction

After considering the results of previous chapter i.e. regarding Λ as one of the fundamental

constants of Nature, we intend to investigate the current observational studies based on Λ-

gravity. In this sense, we extend the analysis done in chapter 1.2, regarding the evaluation

of Λ from different astrophysical configurations. Next, we check the universality and self-

consistency of Λ-gravity by studying the extreme galaxies regarding the nature of DM. After

that, we propose a possible solution for the recently sharpened discrepancy between the so-

called “local” and “cosmological” values of Hubble constant which is known as H0 tension.

Finally, considering the dynamics of N -body systems, we study the problem of stability in

these systems once the Λ-gravity is taken into account. The topics which we will discuss in

this chapter have been published in [42], [44], [47],[48].
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3.2 The cosmological constant derived via galaxy groups

and clusters

A number of approaches are considered to reveal the nature of dark matter, including pre-

diction of exotic particles and modified gravity models; for review see [51]. One of the recent

approaches [39, 40] is based on the GR with a modified weak field limit following from the

Newton theorem on equivalency of gravity of sphere and of point mass. That approach

enables the common description of dark matter and dark energy, where Λ acts as a universal

constant defining the GR and its weak field limit, along with the gravitational constant G

[40]. An observational test for that approach is suggested involving the effect of gravity

lensing [41].

The notable point following from the Newton theorem is that, on the one hand, Λ acts

as a cosmological constant describing the expansion of the Universe, on the other hand, the

same it defines the weak field gravity proper for the dynamics of galaxies, galaxy groups and

clusters, i.e. on the distance scales where the Hubble flow cannot be valid. As shown in

[39] the value of the cosmological constant indeed is supported by the parameters of galactic

halos and of a sample of galaxy groups.

Here we continue to address the principal issue on the Λ-nature of dark matter considering

the data on galaxy systems, from galaxy pairs to galaxy clusters. Among the used samples

are data on galaxy groups of Local Supercluster, of galaxy clusters obtained both with gravity

lensing and by Planck satellite. Assuming that the dynamical structure of the considered

galaxy systems is governed by the modified Newton law [39], we obtain Λ which appear

limited from below by the value of cosmological constant. In other words, the value of the

cosmological constant is extracted from galaxy systems and not from cosmology.
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3.2.1 The Λ constant and galaxy systems

The Newton theorem on “sphere-point” equivalency enables one to arrive at the GR metric

[39, 40]

g00 = 1− 2Gm

rc2
− Λr2

3
; grr = 1 +

2Gm

rc2
+

Λr2

3
. (3.1)

This implies that the weak field limit for GR as modified Newton law involves two constants

(for the potential)

φ(r) = C1r
−1 + C2r

2, (3.2)

where C1 is assigned to G and C2 to Λ (within numerical factors).

Eq.(3.1) was known before as Schwarzschild – de Sitter metric [68], where the constant

Λ was introduced by Einstein to describe the static cosmological model.

Within our approach Λ is emerging from the general function satisfying the Newton’s

theorem and hence naturally emerges in weak field GR, and that correspondence can be rep-

resented via isometry groups. Namely, the Lorentz group O(1,3) acts as stabilizer subgroup

of isometry group of 4D maximally symmetric Lorentzian geometries [40]. The results are

shown in Table 3.1 and for all these geometries the Lorentzian spheres can be considered as

points. Consequently, depending on the sign of Λ, we will have the following non-relativistic

limits

O(1, 4)→ (O(3)×O(1, 1))nR6, O(2, 3)→ (O(3)×O(2))nR6, IO(1, 3)→ (O(3)×R)nR6,

(3.3)

for all three cases, since the spatial algebra is Euclidean i.e.

E(3) = R3 oO(3). (3.4)

Hence, for all three cases introduced above the O(3) is the stabilizer group for spatial geome-

try. This conclusion, in its turn, can be considered as the Newton’s theorem in the language
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Table 3.1: Background geometries for vacuum solutions

Sign Spacetime Isometry group
Λ > 0 de Sitter O(1,4)
Λ = 0 Minkowski IO(1,3)
Λ < 0 Anti de Sitter O(2,3)

of group theory.

Then, as shown in [39], the weak field Λ extracted from galactic halo and galaxy group

data quantitatively coincides with the Λ obtained from cosmological data.

The value of Λ as of the cosmological constant is currently obtained by several observa-

tional methods, the one obtained by Planck data yields [86]

ΛPL = 1.11× 10−52m−2. (3.5)

For Λ-modified Newtonian gravity Eq.(3.2) the following relation for virialized systems was

derived [39]

Λ =
3σ2

2c2R2
, (3.6)

where R is system’s radius and σ is the velocity dispersion.

To test the conclusion on Λ-nature of dark matter in galaxy systems, below we use

Eq.(3.6) for the analysis of data samples on galaxy pairs, galaxy groups and galaxy clusters.

Galaxy pairs

To probe Eqs.(3.1),(3.2) for galaxy systems we start with galaxy pairs. Here, using the weak

lensing data by Gonzalez et al [95], we estimate the value of Λ from Eq.(3.6) as shown in

Tables 3.10 and 3.11 for given classes of subsamples. Estimations are done both for Singular

Isothermal sphere (SIS) and Navarro-Frenk-White (NFW) models as described in details in

[95], M200 corresponds the mass (for the given model) within radius R200, when the mean

density equals 200 critical density values of the universe.
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Table 3.2: SIS profile

Subsamples σ
(Km/s)

M200( M�) Λ (m−2)

Total Sample 223 ±24 (6.9 ±2.2)E12 5.64E-51
Non Interacting 200 ±38 (5.0 ±3.0)E12 5.62E-51
Interacting Pairs 237 ±29 (8.3 ±3.0)E12 5.63E-51
Red Pairs 264 ±28 (11.4 ±3.7)E12 5.65E-51
Blue Pairs 167 ±45 (2.9 ±2.4)E12 5.64E-51
Higher Luminosity
Pairs

278 ±27 (13.2 ±3.8)E12 5.69E-51

Lower Luminosity
Pairs

149 ±50 (2.0 ±2.0)E12 5.75E-51

Average 5.66E-51
St. deviation 4.21E-53

Table 3.3: NFW profile

Subsamples R200 (Mpc) M200( M�) Λ (m−2)

Total Sample 0.30 ±0.03 (7.1 ±2.1)E12 2.00E-50
Non Interacting 0.27 ±0.05 (5.2 ±2.8)E12 2.01E-50
Interacting Pairs 0.32 ±0.03 (8.0 ±2.9)E12 1.86E-50
Red Pairs 0.36 ±0.03 (12.1 ±3.6)E12 1.97E-50
Blue Pairs 0.22 ±0.06 (2.7 ±2.1)E12 1.93E-50
Higher Luminosity
Pairs

0.36 ±0.03 (12.7 ±3.8)E12 2.07E-50

Lower Luminosity
Pairs

0.19 ±0.07 (1.7 ±1.8)E12 1.89E-50

Average 1.96E-50
St. deviation 6.77E-52

Galaxy groups

Data on galaxy groups as of systems containing 3 and more galaxies situated within the

Local Supercluster, namely, of the Leo/Cancer region and Bootes strip are obtained by

Karachentsev et al [96, 97]; the analysis of their data on groups of the Hercules-Bootes

region [59] is given in [39]. Tables 3.12 and 3.13 contain the observational data i.e. the

velocity dispersion of galaxies σ and the harmonic average radius Rh of the groups denoted

by their brightest galaxy listed in the first column. The last column contains Λ estimated

by Eq.(3.6).
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Table 3.4: Galaxy groups of Leo/Cancer region

Group σV (km/s−1) Rh(kpc) Λ(m−2)

NGC2648 55 128 3.24E-51
NGC2775 89 296 1.59E-51
NGC2894 50 458 2.09E-52
NGC2962 53 161 1.90E-51
NGC2967 62 507 2.63E-52
UGC5228 40 188 7.95E-52
NGC3023 21 35 6.32E-51
NGC3020 45 44 1.84E-50
NGC3049 15 144 1.91E-52
UGC5376 66 253 1.20E-51
NGC3166 44 126 2.14E-51
NGC3227 74 128 5.87E-51
NGC3338 50 112 3.50E-51
NGC3379 193 191 1.79E-50
NGC3423 21 570 2.38E-53
NGC3521 37 132 1.38E-51
NGC3596 42 41 1.84E-50
NGC3607 115 471 1.05E-51
NGC3626 86 187 3.72E-51
NGC3627 136 201 8.04E-51
NGC3640 134 252 4.97E-51
NGC3686 91 175 4.75E-51
NGC3810 43 360 2.51E-52

Average 4.62E-51
St. devia-
tion

5.70E-51

Galaxy clusters

We now turn to galaxy clusters, the higher scale structure in the hierarchy of galaxy systems.

We use the data both on cluster gravity lensing and supernova survey with HST (CLASH)

[98]. In the Table 3.14 we exhibit the data for all 19 clusters of CLASH survey along with

the results of estimation of Λ using Eq.(3.6).

Besides the CLASH data we use also data of 3 Planck clusters from [99] and represent

the estimated Λ (Table 3.7).

Finally, we estimate the Λ for a sample of Local Cluster Substructure Survey (LoCuSS)

clusters [100], as represented in Table 3.8.
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Table 3.5: Galaxy groups of Bootes strip region

Group σV (km/s−1) Rh(kpc) Λ(m−2)

N4900 36 116 1.69E-51
N5248 38 151 1.11E-51
N5363 114 165 8.39E-51
N5506 23 35 7.59E-51
N5566 103 196 4.85E-51
N5638 74 203 2.33E-51
P51971 10 100 1.76E-52
IC1048 83 150 5.38E-51
N5746 107 296 2.30E-51
N5775 87 120 9.23E-51
N5792 48 290 4.81E-52
N5838 53 210 1.12E-51
N5846 228 415 5.30E-51

Average 3.84E-51
St. devia-
tion

3.01E-51

The advantages of using CLASH data is that they provide the values for virial masses

Mvir of clusters. Although the degree of virialization of a given cluster varies from one cluster

to another and hence is a separate issue for analysis, those masses provide the upper limit

of error for the value of Λ.

Namely, by considering the Λ-modified potential from one side, and the error limit for

Mvir, on the other side, we have an upper limit for the value of Λ

E(σ2)

σ2
=

ΛR3
virc

2

6GMvir

, (3.7)

where E(σ2) is the error limit for σ2. The results for the CLASH clusters are shown in Table

3.9. Note that, for all these clusters the error limit covers the value of Λ as of cosmological

constant.

Meantime, let us note that the virial mass and radius can be defined as [101]

M =
4

3
πR3∆cρcrit, (3.8)
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Table 3.6: CLASH Survey

Cluster Rvir

(Mpc)
Mvir ( M�) Λ (m−2)

Abell 383 1.86 (1.04 ±0.07)E15 1.23E-50
Abell 209 1.95 (1.17 ±0.07)E15 1.20E-50
Abell 2261 2.26 (1.76 ±0.18)E15 1.16E-50
RXJ2129+0005 1.65 (0.73 ±0.07)E15 1.24E-50
Abell 611 1.79 (1.03 ±0.07)E15 1.37E-50
MS2137-2353 1.89 (1.26 ±0.06)E15 1.42E-50
RXCJ2248-4431 1.92 (1.40 ±0.12)E15 1.51E-50
MACSJ1115+0129 1.78 (1.13 ±0.10)E15 1.52E-50
MACSJ1931-26 1.61 (0.83 ±0.06)E15 1.51E-50
RXJ1532.8+3021 1.47 (0.64 ±0.09)E15 1.53E-50
MACSJ1720+3536 1.61 (0.88 ±0.08)E15 1.60E-50
MACSJ0429-02 1.65 (0.96 ±0.14)E15 1.63E-50
MACSJ1206-08 1.63 (1.00 ±0.11)E15 1.76E-50
MACSJ0329-02 1.54 (0.86 ±0.11)E15 1.79E-50
RXJ1347-1145 1.80 (1.35 ±0.19)E15 1.76E-50
MACSJ1311-03 1.28 (0.53 ±0.04)E15 1.92E-50
MACSJ1423+24 1.34 (0.65 ±0.11)E15 2.06E-50
MACSJ0744+39 1.33 (0.79 ±0.04)E15 2.56E-50
CLJ1226+3332 1.57 (1.72 ±0.11)E15 3.38E-50

Average 1.69E-50
St. deviation 5.16E-51

Table 3.7: Planck Clusters

Clusters σ (Km/s) M200( M�) Λ (m−2)

PSZ1
G109.88+27.94

1800 ±200 (44 +16
−13)E14 4.96E-51

PSZ1
G139.61+24.20

800 ±100 (6.3 +2.7
−2.1)E14 3.58E-51

PSZ1
G186.98+38.66

1100 ±200 (14.5 +9.4
−6.5)E14 3.88E-51

Average 4.14E-51
St. deviation 5.93E-52

where ∆c is the overdensity parameter and ρcrit is the critical density of the universe. The

∆c, in its turn is obtained for each era of the universe as [102]

∆c = 18π2 + 82x− 39x2, x = Ω(z)− 1, Ω(z) =
H2

0

H2(z)
Ω0(1 + z)3, (3.9)
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Table 3.8: LoCuSS Clusters

Cluster R200

(h−1
100Mpc)

M200 ( M�) Λ (m−2)

Abell 586 1.2 ±0.2 (5.1 ±2.1)E14 2.25E-50
Abell 611 1.1 ±0.1 (4.0 +0.7

−0.8)E14 2.29E-50
Abell 621 1.2 +0.2

−0.1 (4.8 +1.7
−1.8)E14 2.11E-50

Abell 773 1.1 ±0.1 (3.6 ±1.2)E14 2.06E-50
Abell 781 1.1 ±0.1 (4.1 ±0.8)E14 2.34E-50
Abell 990 0.9 ±0.1 (2.0 +0.4

−0.1)E14 2.09E-50
Abell 1413 1.1 ±0.1 (4.0 ±1.0)E14 2.29E-50
Abell 1423 0.9 ±0.1 (2.2 ±0.8)E14 2.30E-50
Abell 1758a 1.1 ±0.1 (4.1 +0.7

−08 )E14 2.34E-50
Abell 1758b 1.1 ±0.2 (4.4 ±1.9)E14 2.52E-50
Abell 2009 1.2 ±0.1 (4.6 ±1.5)E14 2.03E-50
Abell 2111 1.1 ±0.1 (4.2 ±0.9)E14 2.40E-50
Abell 2146 1.2±0.1 (5.0 ±0.7)E14 2.20E-50
Abell 2218 1.3±0.1 (6.1 ±0.9)E14 2.11E-50
RXJ0142+2131 1.0±0.1 (3.7 +1.1

−1.2)E14 2.82E-50
RXJ1720+2638 0.9±0.1 (2.0 ±0.4) E14 2.09E-50

Average 2.27E-50
St. deviation 1.96E-51

where H is the Hubble constant.

Thus it turns out that considering the Newtonian virial theorem σ2 = GMvir

Rvir
and Eq.(3.8)

for virialized systems one can calculate the value of Λ based on Eq.(3.6)

Λ =
3

4

∆c

c2
H2. (3.10)

Eq.(3.9) enables one to calculate the value of ∆c at each era of Universe. For pure de Sitter

universe ∆c = 18π2 ≈ 178, while within the “spherical collapse” model its value yields ∆c

=200 [103]. However, within the ΛCDM cosmology ∆c ≈ 100 ([104] and references therein).

Considering all above, for H = 70 (km/s)/(Mpc) one will obtain Λ ≈ 4.30× 10−51m−2.

56



Table 3.9: Error limit of Λ for CLASH Survey

Cluster Radius
(Mpc)

Mvir( M�) Λ (m−2)
≤

Abell 383 1.86 (1.04 ±0.07)E15 3.31E-51
Abell 209 1.95 (1.17 ±0.07)E15 2.87E-51
Abell 2261 2.26 (1.76 ±0.18)E15 4.74E-51
RXJ2129+0005 1.65 (0.73 ±0.07)E15 4.74E-51
Abell 611 1.79 (1.03 ±0.07)E15 3.71E-51
MS2137-2353 1.89 (1.26 ±0.06)E15 2.70E-51
RXCJ2248-4431 1.92 (1.40 ±0.12)E15 5.16E-51
MACSJ1115+0129 1.78 (1.13 ±0.10)E15 5.39E-51
MACSJ1931-26 1.61 (0.83 ±0.06)E15 4.37E-51
RXJ1532.8+3021 1.47 (0.64 ±0.09)E15 8.62E-51
MACSJ1720+3536 1.61 (0.88 ±0.08)E15 5.83E-51
MACSJ0429-02 1.65 (0.96 ±0.14)E15 9.48E-51
MACSJ1206-08 1.63 (1.00 ±0.11)E15 7.73E-51
MACSJ0329-02 1.54 (0.86 ±0.11) E15 9.16E-51
RXJ1347-1145 1.80 (1.35 ±0.19)E15 9.91E-51
MACSJ1311-03 1.28 (0.53 ±0.04)E15 5.80E-51
MACSJ1423+24 1.34 (0.65 ±0.11)E15 1.39E-50
MACSJ0744+39 1.33 (0.79 ±0.04)E15 5.17E-51
CLJ1226+3332 1.57 (1.72 ±0.11)E15 8.65E-51

Average 6.38E-51
St. deviation 2.85E-51

3.3 Dark matter extremal galaxies probing Lambda-

gravity

The DM continues to remain one of key mysteries of cosmology and fundamental physics. A

number of models are proposed to explain the available observational data or provide tests

for ongoing surveys and experimental programs. In conditions of current entire uncertainty

regarding the nature of DM, the extreme observational data i.e. astrophysical objects either

with apparent lack of DM or those formed mainly of DM, can be of particular interest

especially for testing modified gravity models. In general, extremal experimental data are

known to be instrumental, at least in ruling out certain theoretical models or approaches.

The recently discovered galaxies NGC1052-DF2 [110, 111] and NGC1052-DF4 [112] are
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claimed to show no indication for DM in their structures. Among the other extreme cases one

can consider the ultra diffuse galaxy (UDG) Dragonfly 44 [113] as made up almost mostly

(98%) of DM.

These DM-extremal galaxies we use below to test one of recent approaches to describe

the dark sector based on a modification of GR when the cosmological constant Λ enters its

weak-field limit [39, 40, 41]. That approach follows directly from Newton theorem on the

equivalency of sphere’s gravity and that of a point mass situated in its center. Within that

approach both the dark matter and dark energy are determined by cosmological constant

Λ which acts as a second fundamental constant of gravity along with G [42]. Then, the

DM is defined by weak-field limit of GR [40, 43]. That Λ-gravity approach enables to

explain the dynamical properties of groups and clusters of galaxies [39, 43] and also the

H-tension [44]. We also mention the recent study [114], where the non-particle nature of the

DM is concluded. Note that, while the role of cosmological constant has been considered in

context of phenomenological (isothermal) galactic models [115], the analysis based on Newton

theorem offers deeper insights mentioned above, also now far more advanced observational

data are available.

The DM extreme galaxies can therefore provide an informative testing option for modified

gravity theories, thus complementing the possibilities of gravity lensing [66, 41], celestial

mechanics [64], galaxy cluster dynamics [147, 148, 47], cosmological perturbation evolution

[109] and dedicated GR experimental programs [118, 60].

3.3.1 Newton theorem and Λ-gravity

The Newton theorem on “sphere-point” equivalency enables to arrive to the weak-field mod-

ification of General Relativity, i.e. given by the metric [40] (c = 1)

g00 = 1− 2Gm

r
− Λr2

3
; grr =

(
1− 2Gm

r
− Λr2

3

)−1

. (3.11)
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Table 3.10: Background geometries for GR solutions

Sign Spacetime Isometry group Curvature
Λ > 0 de Sitter (dS) O(1,4) +
Λ = 0 Minkowski (M) IO(1,3) 0
Λ < 0 Anti de Sitter (AdS) O(2,3) -

This metric was known before (Schwarzschild - de Sitter metric), however when deduced

based on Newton theorem it provides a description of astrophysical structures (e.g. of galaxy

clusters) in weak-field limit of GR [41].

The general function for force F(r) satisfying Newton’s theorem has the form (see [38,

39, 40])

F(r) =

(
−A
r2

+Br

)
r̂ . (3.12)

The second term here leads to the cosmological term in the solutions of Einstein equations

and the cosmological constant Λ appears in weak-field GR [42].

The Λs entering in Eq.(3.11) and Eq.(3.12) have clear group theory background. Namely,

depending on the sign of Λ - positive, negative or zero - one has three different vacuum

solutions for Einstein equations corresponding to isometry groups, as shown in Table 3.10.

These maximally symmetric Lorentzian 4D-geometries have Lorentz group O(1,3) as

their isometry stabilizer group. The group O(1,3) of orthogonal transformations in these

Lorentzian geometries implies spherical symmetry (in Lorentzian sense) at each point of

spacetime, i.e.

dS =
O(1, 4)

O(1, 3)
, M =

IO(1, 3)

O(1, 3)
, AdS =

O(2, 3)

O(1, 3)
. (3.13)

In non-relativistic limit the full Poincare group IO(1,3) is reduced to the so-called Galilei

group Gal(4)=(O(3)×R)nR6, which can be considered as the action of O(3)×R on group of

boosts and spatial translations R6. Similarly, for non-relativistic limit of O(1,4) and O(2,3)

groups one has

O(1, 4)→ (O(3)×O(1, 1)) nR6, O(2, 3)→ (O(3)×O(2)) nR6. (3.14)
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Consequently, the Galilei spacetime is achieved via quotienting Gal(4) by O(3)×R3, while

the Newton-Hooke NH± spacetimes are given by the same quotient group but for groups

achieved in Eq.(3.14). For all these cases O(3) is the stabilizer group of spatial geometry,

that is each point (in spatial geometry) admits O(3) symmetry. This statement can be

regarded as group theory formulation of Newton theorem.

It is important that, the force of Eq.(3.12) defines non-force-free field inside a spherical

shell, thus drastically contrasting with Newton’s gravity when the shell has force-free field in

its interior. The non-force-free field agrees with the observational indications that galactic

halos do determine features of galactic disks [55]. The weak-field GR is able to describe the

observational features of galactic halos [39, 62], of groups and clusters of galaxies [41].

3.3.2 DM-extremal galaxies

The weak-field GR given by Eqs.(3.12) and (3.11) has been applied to describe the dynamics

of galactic halos, galaxy groups and clusters [39, 43] by means of the virial theorem for

the gravitational potential containing besides the Newtonian term also the one with the

cosmological constant Λ. So, as in [43] at comparison with observational data, the current

numerical value of the cosmological constant Λ has to be smaller than the error of velocity

dispersion

|1 + Λ
c2R3

vir

6GMvir

| ≤ (
σ ± E(σ)

σ
)2. (3.15)

We will now extend such an analysis to two categories of extremal cases i.e. to galaxies

with no DM and galaxies made up of DM only. Indeed, the analysis of extreme cases can

pose strict constraints over various theories of gravity and even rule them out [119].
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DM-missing galaxies

For the galaxies without DM we study the recently discovered NGC 1052-DF2 [110, 111]

and NGC 1052-DF4 [112]. Then, the upper limit over the Λ for first case will be

Λ ≤ 6.41× 10−49, (3.16)

while for the second case

Λ ≤ 7.05× 10−50. (3.17)

DM-rich galaxy

For the other extremal category we check the structure of Dragonfly 44 as one of best known

ultra diffuse galaxies (UDG) [113]. Here by considering the total dynamical mass Mdyn

within the half-light radius i.e. r = 4.3 kpc equal to 0.7+0.3
−0.2 × 1010M� we have

Λ ≤ 3.82× 10−48. (3.18)

Thus by considering the results of both categories of objects - galaxies lacking DM and

the one made almost entirely of DM - it turns out that the modification of gravity according

to Eq.(3.11) not only is able to describe these structures, but fits the considered weak-field

GR with the numerical value of Λ not contradicting the observational data on these extremal

astrophysical structures.

3.3.3 DM deficient dwarf galaxies

Besides the above two extremal categories of galaxies, a new group denoted as DM deficient

dwarf galaxies has been studied in [120]. For them it has been reported that the matter

content consists mainly of baryons. We start our discussion by checking the velocity of
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galaxies according to Eq.(3.11) i.e.

V 2
cir =

GMdyn

r
− Λc2r2

3
, (3.19)

where Mdyn is the total dynamical mass. Thus, by taking the reported values of these

galaxies we find the error limits of Λ. The results are shown in Table 3.11. The w20 denotes

the 20% of the HI line width which has been considered as indicator of the gas velocity.

Considering the results of Table 3.11, it becomes clear that again there is no contradiction

between Λ-modified gravity and the observed parameters of the galaxies.

Table 3.11: Constraints on Λ for DM deficient dwarf galaxies

Galaxy logMdyn(M�) w20
(km/s)

w20er
(km/s)

Λ (m−2) ≤

AGC 6438 9.444 80.36 2.03 9.57× 10−50

AGC 6980 9.592 56.63 1.54 6.37× 10−51

AGC 7817 9.061 82.37 4.45 1.36× 10−48

AGC 7920 8.981 79.03 2.6 9.47× 10−49

AGC 7983 9.046 46.12 0.83 1.52× 10−50

AGC 9500 9.092 39.08 0.31 2.02× 10−51

AGC 191707 9.08 49.27 1.21 2.64× 10−50

AGC 205215 9.706 72.5 4.41 3.65× 10−50

AGC 213086 9.8 78.35 4.33 3.43× 10−50

AGC 220901 8.864 45.38 0.74 2.91× 10−50

AGC 241266 9.547 52.82 1.98 7.08× 10−51

AGC 242440 9.467 42.47 1.18 2.06× 10−51

AGC 258421 10.124 87.79 8.53 2.63× 10−50

AGC 321435 9.204 56.83 4.41 1.08× 10−49

AGC 331776 8.503 29.59 2.9 6.79× 10−50

AGC 733302 9.042 48.36 0.99 2.37× 10−50

AGC 749244 9.778 70.87 4.91 2.59× 10−50

AGC 749445 9.264 54.51 3.06 4.67× 10−50

AGC 749457 9.445 58.68 5.49 5.16× 10−50

3.3.4 DM-free dwarf spheroidals in the Local Group

In addition to above extreme cases, 62 dwarf spheroidals (dSphs) in the Local Group (LG)

are considered as another sample to analyze the validity of different modified theories of
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gravity and the paradigm of DM. Namely, the study of dSphs surrounding the Milky Way

has suggested those are DM-free structures [121]. Here, by considering Eq.(3.15) we have

obtained error limits of Λ for them. The results are exhibited in Table 3.12.

Table 3.12: Constraints on Λ for 24 dwarf galaxies surrounding the Milky Way

Galaxy σ(km/s2) r (pc) Λ (m−2) ≤
Aquarius2 5.4± 3.4 160.0± 24.0 1.32× 10−46

Bootes1 2.4± 0.9 192.5± 5.039 9.72× 10−48

Carina 6.6± 1.2 303.1± 2.952 1.32× 10−47

Coma 4.6± 0.8 68.59± 3.615 1.18× 10−46

CraterII 2.7± 0.3 1066± 86 1.05× 10−49

CVenI 7.6± 0.4 437.9± 12.59 2.28× 10−48

CVenII 4.6± 1.0 70.83± 11.22 1.42× 10−46

Draco 9.1± 1.2 222.4± 2.079 3.30× 10−47

Draco2 2.9± 2.1 20.73± 7.639 2.71× 10−45

Fornax 11.7± 0.9 792.5± 2.837 2.44× 10−48

Hercules 3.7± 0.9 221.1± 17.4 1.07× 10−47

LeoI 9.2± 1.4 287.9± 2.133 2.35× 10−47

LeoII 6.6± 0.7 164.7± 1.926 2.52× 10−47

LeoIV 3.3± 1.7 114.3± 12.03 7.59× 10−47

LeoV 2.3± 3.2 50.41± 16.15 6.90× 10−46

Sagittarius 11.4± 0.7 1636.0± 52.78 4.31× 10−49

Sculptor 9.2± 1.4 276.4± 0.9872 2.54× 10−47

Segue1 3.9± 0.8 24.11± 2.79 8.31× 10−46

Sextans 7.9± 1.3 412.1± 2.993 9.19× 10−48

TucanaII 8.6± 3.5 156.3± 23.68 2.08× 10−46

UMaI 7.6± 1.0 234.2± 10.01 2.07× 10−47

UMaII 6.7± 1.4 136.3± 5.325 7.83× 10−47

UMi 9.5± 1.2 407.0± 2.0 1.02× 10−47

Willman1 4.3± 2.3 27.7± 2.4 2.29× 10−45

Moreover, considering Eq.(3.11), the radial acceleration will be written as

a(r) = −OΦ =
GMtot

r2
− Λc2r

3
(3.20)

where Mtot is the total mass (both ordinary and DM) of the configuration according to [122].

Consequently, the constrains over Λ will be obtained. For 20 of them these limits are shown

in Table 3.13.
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Table 3.13: Constraints on Λ for 20 dwarf spheroidals of LG

Galaxy log a(r)(m/s2) r (pc) Λ (m−2) ≤
Bootes I -11.14± 0.15 283± 7 8.09× 10−48

Bootes II -9.75± 0.63 61± 24 2.41× 10−45

Canes Venatici I -11.06± 0.05 647± 27 1.58× 10−48

Canes Venatici II -10.69± 0.19 101± 5 7.75× 10−47

Carina -10.81± 0.18 273± 45 2.08× 10−47

Coma Berenices -10.59± 0.16 79± 6 1.08× 10−46

Draco -10.48± 0.12 244± 9 3.54× 10−47

Fornax -10.77± 0.08 792± 58 3.90× 10−48

Hercules -11.11± 0.22 175± 22 1.90× 10−47

Hydra II -10.65± 0.12 88± 17 6.64× 10−47

Leo I -10.56± 0.06 298± 29 1.29× 10−47

Leo II -10.71± 0.14 219± 52 2.65× 10−47

Leo IV -11.15± 0.47 149± 47 3.39× 10−47

Leo V -11.35± 0.88 125± 47 3.35× 10−47

Leo T -10.47± 0.19 160± 10 8.12× 10−47

Sculptor -10.58± 0.13 311± 46 2.36× 10−47

Sextans -11.09± 0.15 748± 66 3.43× 10−48

Ursa Minor -10.66± 0.12 398± 44 1.43× 10−47

Ursa Major I -11.35± 0.88 125± 47 3.35× 10−47

Ursa Major II -10.47± 0.19 160± 10 8.12× 10−47

3.3.5 Early type galaxies

In this section we extend our analysis of Λ-modified gravity regarding the nature of DM,

on the data of early type galaxies [123, 124]. Namely, by taking the HI circular velocity

according to Eq.(3.19), we obtain the error limits of Λ as it is shown in Table 3.14.

3.4 H0 tension: clue to common nature of dark sector?

Recent measurements [125] increase the existing tension between the Hubble constant deter-

minations from Planck satellite data [16] and lower redshift observations; the earlier studies

and various approaches for resolving the tension are discussed in [125].

We will consider the H0 tension within the approach of weak-field modified GR which

enabled the common description of the dark matter and dark energy by means of the same
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Table 3.14: Constraints on Λ for early type galaxies

Galaxy Vcirc(HI)(km/s) RHI (arcsec) Λ (m−2) ≤
NGC 2685 144± 10 320 1.56× 10−49

NGC 2824 162± 10 40 1.79× 10−48

NGC 2859 215± 41 115 1.41× 10−48

NGC 2974 310± 10 130 2.18× 10−49

NGC 3522 121± 8 85 6.00× 10−49

NGC 3626 169± 8 120 7.25× 10−49

NGC 3838 159± 14 150 5.15× 10−49

NGC 3941 148± 8 195 7.25× 10−49

NGC 3945 237± 13 130 9.90× 10−49

NGC 3998 246± 20 195 1.98× 10−48

NGC 4203 197± 35 195 1.29× 10−47

NGC 4262 169± 10 120 1.69× 10−48

NGC 4278 256± 26 150 3.46× 10−48

NGC 5582 258± 10 210 2.25× 10−49

NGC 6798 190± 8 150 1.41× 10−49

UGC 06176 144± 14 60 9.99× 10−49

value of the cosmological constant [40, 39, 42]. That approach is based on the Newton’s

theorem on the equivalency of the gravity of the sphere and of a point situated in its center

and provides a natural way for the weak-field modification of GR, so that dark energy is

described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) equations while the dark

matter in galaxy groups and clusters is described by the weak-field GR.

It is a principal fact that by now both the strong field GR has been tested by the

discovery of gravitational waves, while the weak-field effects such as at the frame-dragging

are traced by measurements of laser ranging satellites [60]. The weak-field modifications we

are discussing below are by now far from being tested at satellite measurements and therefore

the dynamical features of the local universe including of the galactic dark halos [62], galaxy

groups [59, 43], can serve as unique probes for such weak-field modifications of GR. Among

other modified gravity tests are the accurate measurements of gravitational lenses [41], along

with the effects in the Solar system [64] or traced from large scale matter distribution [109].

Thus, we show that if the cosmological constant Λ describes both the accelerated expan-

sion and dark matter at galaxy cluster scales, then it will lead to the intrinsic discrepancy
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in the global and local values of the Hubble constant.

3.4.1 Newton’s theorem and Λ

In [40] it is shown that the weak-field GR can involve the cosmological constant Λ, so that

the metric tensor components have the form

g00 = 1− 2Gm

rc2
− Λr2

3
; grr = (1− 2Gm

rc2
− Λr2

3
)−1. (3.21)

This follows from the consideration of the general function for the force satisfying Newton’s

theorem on the identity of sphere’s gravity and that of a point situated in its center and

crucially, then shell’s internal gravity is no more force-free [38]. Namely, the most general

form of the function for the gravitational force which satisfies that theorem is

F (r) = C1r
−2 + C2r, (3.22)

where C1 and C2 are constants of integration; for derivation and discussion see [38, 39]. The

first term in Eq.(3.22) corresponds to the ordinary Newtonian law, and once the modified

Newtonian law (for the potential) is taken as weak-field GR, one has Eq.(3.21), where the

second constant C2 corresponds to Λ (up to a numerical coefficient and c2) [40, 39]. Namely,

the second constant Λ, on the one hand, acts as the cosmological constant in the cosmological

solutions of Einstein equations, on the other hand, enters in the low-energy limit of GR which

hence is attributed to the Hamiltonian dynamics of galaxy groups and clusters [42], instead

of commonly used Newtonian potential.

Within isometry group representation the Lorentz group O(1,3) acts as stabilizer sub-

group of isometry group of 4D maximally symmetric Lorentzian geometries and depending
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on the sign of Λ (+,-, 0) one has the non-relativistic limits [40]

Λ > 0 : O(1, 4)→ (O(3)×O(1, 1)) nR6,

Λ = 0 : IO(1, 3)→ (O(3)×R) nR6,

Λ < 0 : O(2, 3)→ (O(3)×O(2)) nR6.

(3.23)

The O(3) is the stabilizer group for the spatial geometry since for all three cases the spatial

algebra is Euclidean

E(3) = R3 oO(3). (3.24)

Thus, the Newton’s theorem in the language of group theory can be formulated as each point

of spatial geometry admitting the O(3) symmetry.

An important consequence of Eq.(3.22) is that the linear term (related to C2 constant) can

produce a non-zero force inside the shell. This is a unique feature since the pure Newtonian

gravity according to Gauss’ law cannot influence anything inside the shell. Furthermore,

this mathematical feature of Eq.(3.22) can be considered as agreeing with the observational

indications that the properties of galactic disks are determined by halos, see [39].

3.4.2 Local and global Hubble flows with Λ

The Hubble-Lemaitre law as one of established pillars of modern cosmology is character-

ized by the Hubble constant H0 which can be derived by various ways depending on the

observational dataset. Namely, the Planck satellite provided the data on CMB which within

the ΛCDM model led to the following global value H0 = 67, 66 ± 0.42kms−1Mpc−1, as

well as Λ = 1.11 × 10−52m−2 [86]. The recent analysis of Cepheid variables in Large

Magellanic Cloud (LMC) by Hubble Space Telescope (HST) [125] led to the local value

H = 74.03± 1.42kms−1Mpc−1. This discrepancy between the global and local values of the

Hubble constant is the above mentioned tension.
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Our Universe is considered to be described by FLRW metric

ds2 = −c2dt2 + a2(t)(
1

1− kr2
dr2 + r2dΩ2), (3.25)

where depending on the sign of sectional curvature k, the spatial geometry can be spherical

k = 1, Euclidean k = 0 or hyperbolic k = −1. Consequently, the 00-component of Einstein

equations for this metric is written as

H2 = − k
2c2

a2(t)
+

Λc2

3
+

8πGρ

3
, (3.26)

where H = ȧ(t)/a(t) is the Hubble constant.

Here an important point is the following. The Hubble-Lemaitre law originally was es-

tablished for a sample of nearby galaxies, which are members of the Local Group. For them

the empirical Hubble-Lemaitre law seemed to confirm the FLRW equations, however, later

it became clear that not only the galaxies have their peculiar velocities but the Local Group

itself is gravitationally bounded to a larger configuration, see [126]. In other words, that law

was observed at scales for which it should not be observed. Nevertheless, in spite of this ap-

parent contradiction the local flow has been confirmed by observations: the detailed analysis

of the nearby galaxy surveys reveal the local Hubble flow with Hloc = 78 ± 2kms−1Mpc−1

[127].

We will now show that considering Eq.(3.21) as the weak-field limit of GR, it is possible

to solve this tension. Namely, the global Hubble flow will be described by the cosmological

constant of FLRW metric, while the local flow by the weak-field GR given by Eq.(3.21).

So, we are not allowed to use FLRW metric in local scales since the Local Supercluster

galaxies do not move by FLRW geodesics. On the other hand due to attractive nature

of pure Newtonian gravity one cannot produce a repulsive force to cause the local Hubble

flow. However, if we consider the additional linear term of Eq.(3.22) the Λ-term can cause
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Table 3.15: Critical distance for different objects

Central Ob-
ject

Mass (Kg) Radius (m)

Earth 5.97 ×1024 4.92 ×1016

Sun 2 ×1030 =
M�

3.42 ×1018

Sgr A∗ 4.3 ×106M� 5.56 ×1020

Milky Way 1.5 ×1012M� 3.91 ×1022

Local Group 2 ×1012M� 4.31 ×1022

a repulsive acceleration as

a = −GM
r2

+
Λc2r

3
. (3.27)

It is simple to find out the distance at which the acceleration of ordinary Newtonian term

becomes subdominant with respect to the second term. In Table 3.15 the values for such

distances are listed for different mass scales. For objects less massive than the Local Group

(LG), that critical distance is located outside the object’s boundary, which means that it

cannot be observed. For LG, the critical distance is around 1.4 Mpc. Here, it is worth to

mention that, since we have used Eq.(3.21) according to Newton’s theorem, this distance

can be considered as the radius of a sphere which the whole mass of LG is concentrated at

its center. Thus, we conclude that, for those objects located outside this radius we will be

able to observe an outward acceleration. These results obtained based on Newton’s theorem

are in agreement with other analysis [130].

Meantime considering the weak-field limit according to Eq.(3.21), one can obtain the

analogue of Eq.(3.26) for the non-relativistic case

H2 =
Λc2

3
+

8πGρ

3
. (3.28)

In spite of apparent similarity of Eq.(3.28) and Eq.(3.26), there is an important difference

between them. Indeed, in Eq.(3.28) k = 0 and ρ stands only for matter density (baryonic

and non-baryonic), while ρ in Eq.(3.26) includes the contribution also of radiation density;
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in this context see the comparative discussion on FLRW and McCrea-Milne cosmologies in

[131]. Thus, one can conclude that the H observed by HST in local scales is not the one

obtained via Eq.(3.26) by considering the FLRW metric. It is a local effect which can be

described by Eq.(3.28). However, before considering the weak-field limit equations for local

flow, first let us take a look at the Eq.(3.21) itself. According to principles of GR, the weak-

field limit is defined when φ/c2 � 1, where φ is the weak-field potential. Now, by taking

this into consideration, besides the Newtonian term a new limit is defined at large distances

Λr2

3
<< 1, r ' 1.46 1026m = 5.33Gpc. (3.29)

Considering the fact that, the local Hubble flow is observed in few Mpc scales, we are allowed

to use the Eq.(3.28) to describe that flow. By taking cosmological parameters [86], Eq.(3.26)

confirms that the total matter density in our Universe is ρ = 2.68 10−27kgm−3. However, by

substituting H = 74.03 ± 1.42kms−1Mpc−1, the matter density which causes the observed

local Hubble flow will be ρloc = 4.37+0.40
−0.39 10−27kgm−3.

Now, in order to complete our justification we need to check the mean density of the

local astrophysical structures. From hierarchical point of view the LG is located about 20

Mpc away from Virgo cluster[128]. The, Virgo cluster itself together with LG is in a larger

Virgo supercluster [132], which itself is the part of Laniakea supercluster [129]. Considering

the mass and their distances from LG, it is possible to find the distance where the density

of these objects become exactly equal to ρloc. These results are exhibited in Table 3.16.

From these results it becomes clear that not only the error bars fully cover each other,

but also the whole range of the local flow is covered by these values i.e. from 1.70 to 7.07

Mpc. Meantime, according to Eq.(3.27) the critical distance of Virgo supercluster from LG

roughly is 7.27 Mpc, which means that the objects beyond that distance are gravitationally

bounded to the supercluster. Considering the upper limit of Table 3.16 it turns out that

there is no overlapping between the bounded objects and those who move away according
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Table 3.16: Distances of objects where the density is ρloc

Object Mass (Kg) Distance
from LG
(Mpc)

Local Group 2 ×1012M� 1.95± 0.06
Virgo cluster 1.2 ×1015M� 3.450.48

0.52

Virgo superclus-
ter

1.48 ×1015M� 2.260.51
0.56

Laniakea 1017M� 5.002.07
2.29

to Eq.(3.28). Furthermore, these values exactly coincide with the density of Virgo cluster

at distances in which Virgocentric flow changes to the FLRW linear Hubble-Lemaitre law

[130].

Thus, the H0 tension is not a calibration discrepancy but is a natural consequence of

presence of Λ in GR as well as weak-field limit equations. While for global value we have to

consider the Eq.(3.26) as the immediate consequence of FLRW metric and the cosmological

parameters defined as

Ωk = − k2c2

a2(t)H2
, ΩΛ =

Λc2

3H2
, Ωm =

8πGρ

3H2
. (3.30)

The local value of H is obtained by weak-field limit equations and depends strictly on the

local density of matter distribution.

Note that, besides the above mentioned two evaluations of H, other independent mea-

surements also confirm this discrepancy. Among such measurements are those of the Dark

Energy Survey (DES) Collaboration, where the so-called inverse distance ladder method

based on baryon acoustic oscillations (BAO) is used [133]. Considering the BAO as a stan-

dard ruler in cosmology, it turns out that its scale is roughly equal to 150 Mpc which clearly

exceeds the typical distance of our local structures (the Virgo cluster etc). Namely, the

relevant SNe Ia are located at redshifts 0.018 < z < 0.85 [133], which means that according

to the Planck data [16] such objects are located at distances 80Mpc < r < 3Gpc. Thus, by
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comparing these scales with the typical distance to our local structures, one concludes that

the measured H for these observations should mainly be induced by cosmological parameters.

This statement is justified by their measured value H = 67.77± 1.30kms−1Mpc−1.

Other measurements, again using BAO, are those of [134], where like the DES survey,

the distances are 1.8Gpc < r < 6.2Gpc and yield H = 67.6+0.91
−0.87kms

−1Mpc−1.

Thus, one can conclude that there are two different Hs of two different scales, local and

global ones. Consequently, the measurement of these two quantities will depend on scales

attributed by the observations. Namely, for observations of local scales it is expected to

get the local H, while moving to cosmological scales i.e. beyond the Virgo cluster, the

measurements should yield the global H.

Note one more important point: although currently the numerical values of these two

different Hs are close to each other, their physical content is totally different. Namely, this

semi-coincidence is due to the fact that, for the global case the density in Eq.(3.26) is the

current mean density in the Universe. At earlier phases of the Universe the radiation density

had a major contribution to the mean density

Ωρ = Ωm + Ωr. (3.31)

Also, current observations [86] indicate close to zero curvature of the Universe, k=0, and

hence Eq.(3.26) will be similar to the weak-field equation. In other words, while for the

local flow - no matter in which era - the contribution of matter density would have been the

dominant one, for the global flow the contribution to the density in Eq.(3.26) was different

for other cosmological eras where the radiation and k were not negligible.

Considering the FLRW metric’s Hubble constant i.e. the global H for different eras, one

has

H(t) = H0[Ωma
−3(t) + Ωra

−4(t) + Ωka
−2(t) + ΩΛ]1/2, (3.32)
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where H0 is the current value of the global Hubble constant. In this sense, the above

statement about the differences between Hs will be also true as the Universe tends to de

Sitter phase. In that case, all Ωs except ΩΛ will gradually tend to zero. But again, for the

local measures one still will have the same non-zero matter density.

3.5 On the Lambda-evolution of galaxy clusters

The nature of the dark sector - dark matter and dark energy - remains a major puzzle for

fundamental physics in spite of intense observational, experimental and theoretical investi-

gations of the last decades. The recently sharpened H-tension, i.e. the discrepancy between

the Hubble constant determinations from Planck’s data and observations at lower redshift

[125, 135], activated the discussions regarding beyond ΛCDM and new physics [136, 137].

The modified weak-field GR provides one of recent approaches to describing the dark

sector [39, 40, 41]. That modification is based on Newton’s theorem on the identity of

gravity of a sphere and of a point mass situated in its center and enables to conclude

on the common nature of the dark matter and dark energy, both being described by the

cosmological constant [40, 41]. That approach also offers a solution to the H-tension [42].

The cosmological constant Λ within that approach acts as a fundamental constant along

with the gravitational constant G [43], with consequences also for the Conformal Cyclic

cosmology [87]. The non-particle nature of the dark matter is concluded in [?].

If the gravitational interaction at the galaxy cluster scales is defined not only by an at-

tracting force but also by a repulsive force due to the cosmological constant, then the latter

can influence the evolution of galaxy clusters. Analogous modified gravity effects are among

the discussed ones with respect to various astrophysical systems, from celestial mechanical

scales [64] to those of cosmological structure formation [109], whereas the dedicated exper-

imental tests of General Relativity (e.g. [118, 60]) are still not reachable to those effects.

Other testing opportunities are provided by the lensing of galaxies [66, 44].
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Here we will try to reveal a possible difference in the dynamical evolution of two types of

galaxy clusters, those determined by usual Newtonian gravity (standard N-body problem)

and those by modified gravity with the repulsion term. We use geometrical methods of

the theory of dynamical systems [138, 139] first applied to gravitational N-body dynamics

in [140] to describe their chaos and relaxation; for further application of those methods in

General Relativity see [141, 142]. The Ricci curvature criterion of relative instability, that

we use here, was introduced in [143] and has been applied to different types of gravitational

systems (e.g. [144]). Our aim is not the study of entire evolution of galaxy clusters affected

by modified gravity, which will need extensive strategy of N-body simulations but to verify

if the Λ term is able to influence the cluster dynamics and the evolution. Such an approach

appears informative for nonlinear systems, as known since the renown Fermi-Pasta-Ulam

study [145].

The results of our analysis indicate that the Λ-gravity does affect the instability features

of galaxy clusters. We note that previously it was shown that the cosmological constant is

able to introduce a time arrow for the system [63].

3.5.1 Newton’s theorem and Λ

Proceeding from the Newton’s theorem on the “sphere-point” identity and the resulting

weak-field modification of General Relativity, one arrives to the metric [40] (c = 1)

g00 = 1− 2Gm

r
− Λr2

3
; grr =

(
1− 2Gm

r
− Λr2

3

)−1

. (3.33)

The general functions for force and potential i.e. U(r) and F(r) satisfying Newton’s

theorem used for the above weak-field limit of GR have the form (for derivation and discussion
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see [38, 39, 40])

U(r) = −A
r
− B

2
r2; F(r) = −∇rU(r) =

(
−A
r2

+Br

)
r̂ . (3.34)

Here the second term leads to the cosmological term in the solutions of Einstein equations,

so that the cosmological constant Λ enters also the weak-field GR regimes, e.g. in the

Hamiltonian dynamics of galaxy clusters [42].

Crucial feature of the force law of Eq.(3.34) is that it defines non-force-free field inside

a spherical shell, contrary to Newton’s gravity law when the shell has no influence in its

interior. In this regard we mention the observational indications that the galactic halos

do determine the properties of galactic disks [55]. The weak-field GR thus can be used to

describe the observational features of galactic halos [39, 62], of groups and clusters of galaxies

[41].

3.5.2 Ricci curvature

The Lagrangian for N-body system interacting by the Λ-potential (from Eq.(3.34)) is

L(r, v) = 1
2

N∑
a=1

mav
2
a − U(r), (3.35)

U(r) = −
N∑
a=1

a−1∑
b=1

Gmamb

|ra − rb|
− Λ

6

N∑
a=1

ma|ra|2. (3.36)

According to the criterion of relative instability defined in [143], among two systems the

more unstable is the one with smaller negative Ricci curvature

r = 1
3N

inf
0≤s≤s∗

ru(s), r < 0, (3.37)

within 0 ≤ s ≤ s∗ interval of geodesic in the configurational space.

This criterion follows from the equation of geodesic deviation (Jacobi-Levi-Civita) equa-
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tion [138, 139] averaged via the deviation vector

d2z

ds2
= − 1

3N
ru(s) + 〈‖ ∇un ‖2〉, (3.38)

where

n = zn̂, ‖ n̂ ‖2= 1,

and ru(s) is the Ricci curvature in the direction of the velocity of the geodesic u, and

ru(s) =
Ric(u, u)

u2
=

3N−1∑
µ=1

Keµ,u(s), (eµ⊥u, eµ⊥eν , µ 6= ν). (3.39)

The Ricci tensor for N-body system yields [140, 143]

Ricαβ = −1

2

∆W

W
gαβ −

(3N − 2)

2

Wαβ

W
+

3(3N − 2)

4

WαWβ

W 2
− (3N − 4)

4

‖dW‖2

W 2
gαβ,(3.40)

where gαβ = maδαβ, and

W = E − U = E +
N∑
a=1

a−1∑
b=1

Gmamb

|ra − rb|
+

Λ

6

N∑
a=1

ma|ra|2 = 1
2

N∑
a=1

mav
2
a. (3.41)

For the Lagrangian of Eq.(3.35) the latter is

Ric(v, v) =
(3N − 2)

2W

N∑
c=1

N∑
a=1
a 6=c

Gmcma

ρ3
ca

(
vc · vca − 3

(rca · vc)(rca · vca)
ρ2
ca

)

+
3(3N − 2)

4W 2

− N∑
c=1

N∑
a=1
a6=c

Gmcma
rca · vc
ρ3
ca

+
Λ

3

N∑
c=1

mcrc · vc

2

− (3N − 4)

2W

N∑
c=1

mc

∣∣∣∣∣∣−
N∑
a=1
a6=c

Gma
rca
ρ3
ca

+
Λ

3
rc

∣∣∣∣∣∣
2

− 2(3N − 1)

3
Λ , (3.42)

where rab = ra − rb, va = ṙa, vab = va − vb, ρa = |ra|, ρab = |rab|, for any two vectors e1 and
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e2 we have e1 · e2 = δije
i
1e
j
2.

3.5.3 Results

We simulated the dynamics of two types of N-body spherical systems of typical galaxy

cluster parameters, one defined by Newtonian gravity, the other defined by an additional

Λ-potential i.e. by Lagrangian Eq.(3.35). The Ricci curvature was estimated for both, to

see if the instability properties of the both systems according to the criterion Eq.(3.37) do

reveal differences during their evolution over cosmological time scale.

To simulate systems with typical parameters of galaxy clusters we used a spherical dis-

tribution of N = 1, 000 particles (galaxies), each of mass m = 1011M�, inside a sphere of

R = 1.5 Mpc. The velocities were defined by considering such galaxy clusters (i.e. of 1, 000

members) as semi-virialized configurations, i.e.

σ2 =
GNm

R
=
GM

R
, (3.43)

where σ2 is the velocity dispersion of galaxies of the cluster and M is the total mass of

the cluster. Consequently, the dynamical time scale for a typical cluster in Newtonian and

Λ-modified regime will be

tG =

(
2R3

GM

)1/2

= 3.86 Gyr, tGΛ =

(
2R

GM
R2 − ΛR

3

)1/2

= 3.90 Gyr . (3.44)

The results of computations using Eqs.(3.37)-(3.42) are shown in Fig.3.1. Comparing both

Newtonian and Λ-modified gravity it turns out that the behavior of Ricci curvature r for

both cases are similar to each other (Fig.3.1). However, while the values of Ricci curvatures

practically coincide at time scales up to around 2 Gyrs, at later phases those values for

pure Newtonian case are systematically larger than for Λ-modified gravity. According to the
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criterion Eq.(3.37) in view of the fact that the value rGΛ is smaller than rG - both having

negative infimum according to criterion Eq.(3.37) within the cosmological time interval [2.4

Gyr - 17.4 Gyr] - one can conclude that spherical Newtonian systems which at large N limit

are known to be exponentially unstable (chaotic) [140], become even more unstable with the

Λ-term in the gravity force Eq.(3.34).

Then we performed the same analysis for systems of parameters of superclusters, using

the data of the Virgo Supercluster. Note, that there is a principal difference between this case

and those of galaxy clusters for Λ-modified gravity. Namely, from Eq.(3.33) and Eq.(3.34)

one can define a critical distance scale for a system, where the repulsive term of Λ becomes

dominant [42] over the Newtonian gravity

r3
crit =

3GM

Λ
. (3.45)

For structures of smaller than superclusters’ scale this radius lies outside the configuration

which means that the role of the Λ term in its properties is suppressed. But for superclusters

of scales larger than rcrit the role of Λ-term can be felt in the dynamics of galaxies [42]. For

Virgo Supercluster that critical radius yields around 12.66 Mpc. In this regard, we checked

the behavior of Ricci curvature for three different cases. First, we analysed a system of

parameters of the Virgo Supercluster, i.e. R= 16.5 Mpc, N = 1, 480, and M = 1.48 ×

1015 M�. The results i.e. the difference of Ricci curvature for Newtonian and Λ-modified

gravity, are given in Fig.3.1. Then we studied two different cases, i.e. with the same mass

and number of particles but for different radii i.e. R = 18 (>12.66) Mpc and R = 10 Mpc

(<12.66). For latter two cases the results are shown in Figs.3.4-3.5. It is interesting that

for both, 18 Mpc and 16.5 Mpc (both exceeding the critical distance 12.66 Mpc), as time

goes on the difference of Ricci is increasing and even for R = 18 Mpc, it becomes positive,

which can be interpreted as tending to free particle system. While for the bound structure

R = 10 Mpc the Ricci curve shows a tendency to decrease, i.e. indicating the unstable
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N-body system.

Figure 3.1: The Ricci curvature variation vs cosmological time for galaxy cluster parameters
in Newtonian (green) and Λ-modified gravity (blue) regimes.

3.6 Conclusions

In this chapter, we studied the relevance of the weak field GR with modified potential

Eq.(3.2) to the description of the dynamics of galaxy systems, tracing galaxy pairs, groups

and clusters. It is important that the used data are not of the same origin but were obtained

at galactic surveys, gravity lensing studies and by Planck satellite. For the analysed hier-

archy of systems of galaxies the numerical value of Λ obtained as a weak field GR without

any cosmological considerations is in visible agreement with Λ obtained from relativistic

cosmology.

There are at least two aspects to be outlined at the interpretation of the obtained Λs
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Figure 3.2: The difference of Ricci curvature values of curves in Fig.3.1, i.e. at Newtonian
and Λ-modified gravity laws.
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Figure 3.3: The same as in Fig.3.2 but for supercluster (Virgo) parameters.
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Figure 3.4: The same as in Fig.3.3 but for R = 18 Mpc.
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Figure 3.5: The same as in Fig.3.3 but for R = 10 Mpc.
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regarding both the values and their scatter:

a) Eq.(3.6) used for the estimation of Λ assumes that the virial theorem, i.e. the equipar-

tition is determined purely due to the Λ term, while obviously the conventional Newtonian

term’s contribution has to be there as well. Therefore, the cosmological constant Eq.(3.5)

has to be a lower limit for the Λ values obtained for galaxy systems. Namely, for fully

virialized systems the empirical values of Λ have to be close to the cosmological constant,

Eq.(3.5), while for others the empirical values have to be higher. Exactly such a behavior is

visible in the exhibited Tables;

b) the scatter in values of Λs in Tables is certainly expected due to the various virialization

degree reached in each given system (galaxy pair, group, cluster). Decrease of that scatter

will be possible when more refined dynamical structure of any individual system can be

available.

Thus, while for certain systems e.g. galaxy groups of NGC 2894, NGC 3049, NGC 3810,

P 51971 the obtained Λs are close to the cosmological constant value, Eq.(3.5), in their

absolute majority they exceed the latter.

The obtained values of Λ are also influenced by the inhomogeneity of the data sources,

e.g. by the inevitable difference between the lensing and dynamical masses of galaxy systems

or the masses of CMB-SZ clusters (see [105]). The structure and the extension of the dark

halos of galaxies [62] are especially relevant for pair galaxies and galaxy groups studies. Note

that, a crucial difference of the modified potential Eq.(3.2) from the Newtonian one is that,

the second term in Eq.(3.2) defines non-force free field inside a shell [38] and hence e.g. the

properties of galactic disks have to be determined by dark halos [39, 62]. The Λ-constant

can be associated also to the time arrow [63]. Regarding the Λ-constant, including in the

context of the local Universe within equilibria concepts, see [106, 107, 54, 108]. Among other

means for probing weak-field modified gravity are the large scale matter distribution (see

[109]), the effects in Solar system [64, 60].
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Thus, the Λ-constant enables the description both of the accelerated universe and the

dynamics of galactic systems. The cosmology is described by GR, while the galaxy system

dynamics is described by weak field GR, both containing the same Λ. One can therefore

conclude that, the non-zero cosmological constant might be discovered from galactic systems

even before high redshift SN surveys and CMB.

Then, by considering the fact that extremal data are known to be sensitive indicators

for ruling out certain theoretical models, we studied DM extreme galaxies, i.e. either of

anomalously high or low DM content, for testing various models.

Here we used samples of DM-deficient, of a DM-rich galaxy, to see if there are any

contradictions regarding the Λ-gravity, i.e. a modified weak-field General Relativity [39, 40].

Using the available observational data we obtained the upper limits for the Λ for dozens of

objects claimed as DM-extreme ones. Certainly, if the extreme data do not rule out a model,

that still by no means proves the validity of the model, but merely claims the need of even

more tight data to narrow the ambiguity windows.

The fact that by now, in spite of intense observational surveys, as well as of experimental

studies including on accelerators, there is no even basic judgment on the DM nature, iden-

tification and analysis of even more DM-extreme objects can be among informative goals.

On the other hand we proposed a possible solution for H0 tension. In this sense, H0

tension can be not a result of data calibration/systematic but a genuine indication for the

common nature of the dark matter and dark energy. This conclusion is argued above based

on the Newton’s theorem and resulting weak-field limit of General Relativity which includes

the Λ constant. Within that approach while the Friedmannian equations with the Λ term

are describing the accelerated Universe, the same Λ is responsible for the dynamics of galaxy

groups and clusters. Correspondingly, the global Hubble constant derived from the CMB

and the local one devised from the galaxy surveys, including within the Local Supercluster,

have to differ.
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Then, the long known so-called Local Hubble flow [59] i.e. when the galaxies within the

Local Supercluster are fitting the Hubble-Lemâıtre law while the galaxies themselves are

not moving via geodesics of FLRW metric, finds its natural explanation within the metric

Eq.(3.21). In other words, the local value of H0 has to take into account the contribution of

the cosmological constant (as entering the weak-field GR) in the kinematics of the galaxies

along with the observed value of the mean density of matter.

Accurate studies of the dynamics of galactic halos, groups and galaxy clusters, the grav-

itational lensing, can be decisive for further probing of described weak-field GR and the

common nature of the dark sector.

In this sense, the weak-field GR modified based on the Newton theorem enabled one the

common description of the dark matter and dark energy [39, 40], as weak-field and cosmo-

logical manifestation of GR, respectively, both determined by the cosmological constant.

As further step to probe that GR modification, we analysed its possible role in the

evolution of the galaxy clusters, i.e. at spatial scales where the repulsive gravity term

becomes non-negligible. We used the Ricci curvature criterion to follow the comparative

instability of two type of spherical systems, i.e. those evolving according to modified Λ-

gravity of Eqs.(3.33) and (3.34) with respect to usual Newtonian systems.

Our main conclusions can be formulated as follows:

(a) the studied types of systems of galaxy cluster parameters do reveal discrepancy in

their instability properties during the evolution, namely, the Λ-modified gravity systems tend

to become more unstable with respect to those described by Newtonian law. The discrepancy

starts to be visible at cosmological times i.e. at time scales exceeding roughly 2 Gyr.

(b) the supercluster (Virgo) parameter systems reveal differences in their instability prop-

erties depending on their spatial scales. Namely, at distance scales where the Λ-term domi-

nates over the Newtonian gravity, the systems tend to free particle systems at cosmological

time scales, while at smaller distances their behavior remains unstable as of the galaxy
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clusters, as expected.

We note that f(R)-gravity, “beyond Horndeski” covariant Galileon models have been

already used to describe the observable features of clusters of galaxies [146, 147, 148], thus

indicating the suitability of the latter for testing of modified gravity theories.

The study of the evolutionary effects of galaxy clusters at dedicated numerical simulations

(including using advanced methods of the theory of dynamical systems [149]) can provide

additional tests to Λ-gravity as the weak-field limit for General Relativity.
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Conclusions

The main results of this thesis are as follows:

1- A critical test of gravitational lensing is proposed for the parameter of the parametrized

post-Newtonian (PPN) formalism γ = 0.998 (normalized to given lens mass and light impact

distance), which if observed at gravity lenses with proper significance will reveal the weak-

field modification of General Relativity.

2- The weak-field limit of General Relativity based on the Newton’s theorem on sphere-

point identity reveals that the gravity is defined by two fundamental constants, the grav-

itational constant G and the cosmological constant Λ. The higher dimensional analysis of

Newton theorem shows that in contrast to G, Λ preserves its dimensionality and remains

matter-uncoupled and hence can be considered as even more universal than the gravitational

constant G.

3- Consideration of Λ as one of the fundamental constants of Nature enables one to

construct a whole class of dimensionless quantities and eventually describe the “Information”

evolution of the Universe.

4- The unified picture of the Dark Sector - dark matter and dark energy - based on the

weak-field modified General Ralativity is shown to be valid for hierarchical astrophysical

configurations from galaxy binaries, galaxy groups up to galaxy clusters. Besides the so-

called “standard” galaxies, the “extreme” ones regarding the nature of dark matter, are

shown to also fit the Λ-gravity.

5- It is shown that Λ-gravity provides a natural explanation for the so-called “H-tension”
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problem, in agreement with both “local” and “global” measurements of the Hubble constant.

6- Considering the stability problem of N -body gravitating systems of the parameters of

galaxy clusters, it is shown that the Λ-gravity makes the configurations more unstable as

compared to those governed by Newtonian gravity.
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