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Overview

Relevance of the topic.

The trigonometric system is the first example of orthogonal systems of functions. It has played an
important role in various branches of mathematics (harmonic analysis, number theory, mathematical
physics, etc.). It is well known that the Fourier series of a continuous function can be divergent (see
e.g. [3]). In 1910 A. Haar [24] constructed an orthonormal system such that the Fourier series of any
continuous function f with respect to that system uniformly converges to f. Nevertheless the Haar
system does not form a basis for C[0, 1], since its functions are discontinuous. The first example of an
orthonormal basis for C'[0, 1] was constructed by Ph. Franklin in 1928 ([12]). The Franklin system is a
complete orthonormal system of continuous, piecewise linear functions (with dyadic knots).

The systematic investigations of the Franklin system were started by Z. Ciesielski with his remarkable
papers [8] and [9]. Since then, the Franklin system has been studied by many authors from different
points of view. The basic properties of this system, including exponential estimates for the Franklin
functions and LP-stability on dyadic blocks, have been obtained by Z. Ciesielski in [8] and [9]. These
properties turned out to be an important tool in further investigations of the Franklin system. It is known
that this system is a basis in C[0,1] and L? for I < p < oo. The unconditionality of the Franklin
system in LP,1 < p < oo, has been proved by S. V. Bochkarev in [6]. Moreover, the Franklin system
is an unconditional basis in all reflexive Orlicz spaces ([5]). The existence of an unconditional basis
in H' has been first proved by B. Maurey [29], but the proof was non-constructive. The first explicit
construction of an unconditional basis in H! is due to L. Carleson [7]. Then, P. Wojtaszczyk has obtained
a characterization of the BMO space in terms of the coefficients of a function in the Franklin system
and proved that the Franklin system is an unconditional basis in the real Hardy space H! ([37]). The
unconditionality of the Franklin system in real Hardy spaces H?,1/2 < p < 1, has been obtained by P.
Sjo6lin and J. Stromberg ([35]).

The Franklin system has had important applications in various problems of analysis. In particular, the
constructions of bases in spaces C'*(1?) (see [10], [34]) and A(D) (see [5]) are based on this system. Here
C1(I?) is the space of all continuously-differentiable functions f(x,y) on the square I = [0, 1] x [0, 1]
with the norm

of
dy ’ ’

171 = max |, 4)] + max | 27

and A(D) denotes the space of analytic functions on the open disc D = {z : |z| < 1} that are continu-
ously extendable up to the boundary. The norm of a function f € A(D) is defined by

[fI] = max [ f(z)].

|z]<1

-+ max

The questions of existence of bases in C''(1?) and A(D) were posed by S. Banach [2].

Further investigations showed that Haar and Franklin systems share a lot of properties. Nevertheless,
the proofs of properties of Franklin system essentially differ from that of Haar system. In particular, a
Cantor type uniqueness theorem for Franklin series was obtained quite recently ([ 16]). Note that there are
a lot of properties of the Haar system, that are neither proved nor disproved for the Franklin system. For
example, it is not known how one can reconstruct the coefficients of an everywhere convergent Franklin
series. The analogous question for the Haar system was studied back in 1960s by V.A. Skvorcov [36].

It is well known that there are trigonometric series converging almost everywhere to zero and having
at least one non-zero coefticient. This also applies to the series in other classical orthogonal systems, for
instance, to the series in Haar, Walsh and Franklin systems.

The uniqueness problem and reconstruction of coefficients of series by various orthogonal systems
has been considered in a number of papers. Uniqueness theorems for almost everywhere convergent or



summable trigonometric series were obtained by A. Aleksandrov in the paper [1] and by G. Gevorkyan in
[14], under some additional conditions imposed on the series. In this papers, there were obtained Fourier
type formulas expressing coefficients in terms of the sum of the series via A-integral.

Generalizations of these results were obtained in several directions. G. Gevorkyan proved the ana-
logues of these theorems for Franklin and Haar series in [13] and [15]. Afterwards V. Kostin [28] ex-
tended these results to the case of generalized Haar series corresponding to a bounded sequence {p, }.
Then K. Keryan [27] showed that similar results hold even for more general integral then A-integral,
i.e for AH-integrals, introduced by K. Yoneda in [40] Further this result was extended to the regular
martingale setting by M. Ginovyan and K. Keryan in [23].

Then generalizations of these results for univariate and multivariate Franklin series were obtained by
G. Gevorkyan, K.Keryan, M. Poghosyan, and K. Navasardyan in the papers [17], [18], [26] and [32].

In the thesis uniqueness and reconstruction of coefficients problems are considered for orthonormal
spline systems of arbitrary order k& corresponding to “regular” knots using both A-integrals and
AH-integrals. Let’s mention that Franklin system is one of the simplest orthonormal spline system. it is
orthonormal spline systems of order k£ = 2 corresponding to dyadic sequence of knots.

The aim and objectives of the thesis. The main aim of the present thesis is to study uniqueness and
reconstruction of orthonormal spline systems. The following are the main goals:

1. To describe a class of subsequences and coefficient reconstruction formulas for a Franklin series
converging in measure with the majorant of the subsequence of the partial sums satisfying a con-
dition.

2. To recover the coefficients of a multivariate Ciesielski series from its sum if the cubic partial sums
of that series converge in measure and the majorant of partial sums satisfies some necessary con-
dition.

3. To describe sequences so that for the corresponding orthonormal spline system certain coefficient
reconstruction formulas are valid, provided that the orthonormal spline series converge in measure
to a function and the majorant of partial sums satisfies some necessary condition.

Research methods. In the thesis the methods of metric theory of functions, functional anal-
ysis, harmonic analysis, and mathematical analysis are used. Some of the methods are modifica-
tions/generalizations of stopping time for martingales adapted to the setting of splines.

Scientific novelty. All of the main results are new. Below are listed the results:

1. If the subsequence of partial sums o, () of a Franklin series converge in measure to a function
f, the ratio q’;—:l is bounded and the majorant of partial sums o, (x) satisfies to a necessary con-
dition, then the coefficients of the series are restored by the function f via AH integral and its
generalization.

2. Ifthe cubic partial sums of a multivariate Ciesielski series converge in measure to a function and the
majorant of partial sums satisfies some necessary condition, then the coefficients of multivariate
Ciesielski series are recovered by means of its sum via A integral and its generalization.

3. Ifthe partial sums of an orthonormal spline series converge in measure to a function and the majo-
rant of partial sums satisfies some necessary condition, provided that the spline system corresponds
to a “regular” sequence, then recovery formulas are given for coefficients of orthonormal spline
series by means of its sum via A integral and its generalization. Additionally, it is proved that the
regularity of the sequence is essential.



Theoretical and practical value. All the results and methods represent theoretical value. The meth-
ods are applied and can be extended to be further applied in theories of orthogonal series, harmonic
analysis, and martingales.

It is proved that if f is a sum of almost everywhere (a.e.) convergent Haar, Walsh or Franklin series
with a regular majorant of the partial sums, then the coefficients of that series can be reconstructed from
truncations of the function f.

Publications. The main results of the thesis have been published in 3 scientific articles. The list of
the articles is given at the end of the Synopsis.

The structure and the volume of the thesis. The thesis consists of introduction, 3 chapters, a con-
clusion, and a list of references. The number of references is 44. The volume of the thesis is 65 pages.

The Main Content of the Thesis

In Introduction we recall several results concerning the uniqueness problem and reconstruction of
coefficients of series by various orthogonal systems. Uniqueness theorems for almost everywhere con-
vergent or summable trigonometric series were obtained in the papers [1] and [14], under some addi-
tional conditions imposed on the series. Results on uniqueness and restoration of coefficients for series
by Haar, Franklin, generalized Haar systems and regular martingales have been obtained, for instance,
by G. Gevorkyan, M. Ginovyan, K.Keryan, V.Kostin, M. Poghosyan, and K. Navasardyan in the papers
[13], [15], [17], [18], [23], [26], [27], [28] and [32].

To formulate some of these results let’s start with giving the definition of the Franklin system.

The orthonormal Franklin system consists of piecewise linear and continuous functions. This system was
constructed by Franklin [12] as the first example of a complete orthonormal system, which is a basis in
Clo, 1].

Letn =2 +v, u > 0,where 1 <v < 2, Denote

A 5T, for 0 <17 <2,
e =L for 2v<i<n.

21

(1

By S, we denote the space of functions that are continuous and piecewise linear on [0, 1] with nodes
{sn.i}t o, thatis f € S, if f € C]0, 1], and it is linear on each closed interval [s,, ; 1, Sp ], @ = 1,2,--- ,n.
It is clear, that dim S,, = n + 1, and the set {s,,;}7_, is obtained by adding the point s,, 2, to the set
{sn_1.i}"~4. Hence, there exists a unique function f,, € S,,, which is orthogonal to S,,_; and || f,,||> = 1.
Setting fo(z) = 1, fi(z) = v/3(22 — 1) for z € [0, 1], we obtain an orthonormal system { f,, ()},
which was defined equivalently by Franklin [12] .
Here we quote a result by G. Gevorkyan [13] on restoration of coefficients of series by Franklin system.
Specifically, in [13] it was proved that if the Franklin series >~ a, f,,(z) converges a.e. to a function
f(z) and
lim ()\~ {z € [0,1] : sup |Sk(x)| > )\}|> =0,

keN

A—00
where | A| denotes the Lebesgue measure of a set A and

k
Si(x) = a;f;(x)
j=0
then the coefficients a,, of the Franklin series can be reconstructed by the following formula,
1

a, = lim [f(a:)}/\fn(:c)dx,

A—00 0



where
@), it [f(x)| < A,
F@)], = {o, if |f(2)] > A

Similar result on uniqueness is also obtained for the Haar system (see [15]).
Afterwards Gevorkyan’s result was extended by V. Kostin [28] to the series by generalized Haar system.
Consider the d-dimensional Franklin series

Z allfﬂ (X) ’

neNd

where n = (ny,---,ng) € NI is a vector with non-negative integer coordinates, Ny = N U {0},
x = (x1,---,24) €[0,1]¢ and

Fa() = (1) - foy(a)-

The following theorem for multiple Franklin series was proved in [18].
Theorem 0.0.A. ([18]) If the partial sums

Ok (X) = Z anfn <X>

n:n; <2k i=1,--.d

converge in measure to a function f and

m—r0o0

lim ()\m {x € [0,1]¢ : sup |oqn (x)| > )\m}|) =0
k
for some sequence )\,,, — +00, then for any n € N¢

a, = lim [f(x)hmfn(x)dx.

m—00 [071]d

In this theorem instead of the partial sums o4« (X) one can take cubic partial sums o, (x), where {qy }
is any increasing sequence of natural numbers, for which the ratio gx.1/qx is bounded. The following
theorem is proved in [31] .

Theorem 0.0.B. ([31]) Let {gx} be an increasing sequence of natural numbers such that the ratio
Qk+1/qr 1s bounded. If the partial sums o, (x) converge in measure to a function f and there exists a
sequence A, — 400 so that

lim ()\m {x e [0,1]" supoy, (x)] > )\m}\) =0

m— 00

then for any n € Ng

a, = lim [f(x) \ fa(x)dx.

m—ro0 [0’1}d m
Note that similar questions for series by Franklin system was considered by K. Keryan in [26].
The general Franklin systems were introduced by Z. Ciesielski and A. Kamont [11], which enabled

the extensions of results of the Franklin system to orthonormal spline systems with arbitrary knots in the
case of piecewise linear systems, i.e. general Franklin systems (orthonormal spline systems of order 2).

6



Similar result on uniqueness is also obtained for the d-dimensional general Franklin system (see [21]).

Theorem 0.0.C. ([21]) If the partial sums

converge in measure to a function f(x) and

im (3, [{x € 0,11 sup |5u(x)] > 4,11 ) = .

p—o0

for some sequence A\, — +00, then for any m € N¢

Gm = lim o [F(X)], fm(x)dx,
where m = (my,--- ,mq) € NI is a vector with non-negative integer coordinates, Ny = N U {0},
X = (z1,,24) € [0,1]¢ and

fm(X) = fm1 (‘Tl) Tt fmd(‘rd)'

It should be noted that in 2016 Z. Wronicz [38] proved that there exists a non-trivial Franklin series
for which a subsequence of its partial sums converges to zero. Recently he showed that if the 2"-th
subsequence of partial sums converges to 0 with coefficients a,, = o(y/n), then all the coefficients are 0.

Other results on uniqueness and restoration of coefficients for series by Franklin and generalized
Franklin systems have been obtained in the papers [19], [25], [26], and [32].

In Chapter 1 we deal with a truncation of a function by other functions instead of constants, and we
get a generalization of Theorem 0.0.B.

Let functions h,,(z) : [0, 1] — R, satisty the following conditions:

0<hi(z) <hg(z) < - < hpx) <---, lim hy,(z) = oo, ()

m—o0

there exists dyadic points
0=tmo <tmi <tma<-<tmpn, =1,

so that the intervals
IIT = [tﬂ’L,k—lﬂtm,k)a k= ]-7 y Mims

are dyadic as well, 1.e. I} is of the form

i i+1 ,
IEEES i 4
D{[2j, 2j),0§z§2 1,920}

and the function h,,(x) is constant on those intervals,

h’m(x): Zba 'Ie[;qnv ]{321,"'77’Lm.
Moreover
ing/ hm(x)dx = in£\[}f!)\2” > 0, 3)
m, I";n m,
Ap Xﬂ)
su + < 400 4
m,Il:c) (AZL—I )\ZL ( )

7



and

2| \L?L\)
sup e a— < 400. ®)]
m,k (’[k—l‘ ’Ik |

In other words, for any function A, the interval [0, 1] can be partitioned into dyadic intervals, so that the
values of the function on neighbouring intervals are equivalent to each other and so are the lengths of
neighbouring intervals. The following theorem is proved in [26] .

Theorem 1.1.A. Let h,,,(z) be sequence of functions satisfying conditions (2)- (4). If the partial sums
oo = Zi:o a, fn converge in measure to a function f and

lim hm(z)dx =0,

M J{ael0,1); sup, low (@) |>hm ()}

then for any n € N
1

a, = lim [f(m)}hm(z)fn(x)dm.

m—o0

where

_[f@), i 1) <A,
)]0 = {0, it /()] > A(x).

Now we are in position to state the main result of Chapter 1, which is proved in [1*].

Theorem 1.1.1. Let h,,(x) be sequence of functions satisfying conditions (2)- (4), and {gx} be an
increasing sequence of natural numbers such that the ratio g1 /g is bounded. If the partial sums o, ()
converge in measure to a function f and

lim B (2)dz = 0, (6)

MO0 J{ze0,1); supylogy, (@) >hm (x)}

then for any n € Nj
1

a, = lim [ [f(z)], . fa(z)dz. ()

m—0o0 0

To prove Theorem 1.1.1. the following two lemmas are used.

Lemma 1.1.2. Let0 =1t <t} <---<t,=1 and h(x) =N, if = € Iy := [ty_1,t;) and
I, € D, when k=1,--- n. Moreover vy > (
Ak

Akl

< <~v,whenk=1,--- n—1, ®)

-

then there exists points 0 =y < t; < --- < t, = 1 such that h(z) = N, zEl = [ti_1,4) €D, 1 =
1,---s. Besides that

!

1 4|
-~ < —=—— <2y, ©)
27 7 |

1A

—< 2L <~ whenl=1,--,s—1, (10)

T A

mlin[ h(z)dz = mkln/ b (x)dx > 0. (11)
I; Iy,



The proof of the Lemma 1.1.2 can be found in [26].

Lemma 1.1.3. Let h,,(7) be sequence of functions satisfying conditions (2) - (4), then there exists
dyadic points 0 = t,,0 < ty1 < -+ < tima,, = 1 so that the intervals I})" = [tyx—1,tmi) € D, k =
1,---fyy, are dyadic as well and the function h,, () is constant on those intervals,

h(x) = NP if eI k=1, Ay,

and the conditions (3) - (5) are satisfied.

In Chapter 2 we generalize Theorem 0.0.A. for multiple Ciesielski series.
We are concerned with orthonormal spline systems of order £ with dyadic partitions. Let £ > 2 be an
integer. For n in the range —k +2 <n <1, let S be the space of polynomials of order not exceeding
n + k — 1 (or degree not exceeding n + k — 2) on the interval [0, 1] and { j}(f)}izf 1+ be the collection
of orthonormal polynomials in L? = L?[0, 1] such that the degree of fé’“) isn+k—2. Forn > 2, let
n=2"+j,whererv > 0,1 < 5 < 2". Denote

0, —k+1<i<0
A, 1<i<2)

ol 2+ 1<i<n—1
I, n<i<n+4+k-—1,

|
SN

and let 7,, be the ordered sequence of points s,, ;. Note that 7,, is obtained from 7,,_; by adding the point
sn2j—1. In that case, we also define S to be the space of polynomial splines of order £ with grid points
T.. For each n > 2, the space Sfl’i)l has codimension 1 in SY") and, therefore, there exists a function

M e 8% that is orthogonal to the space 87@1 and || f,(lk)Hg = 1. Observe that this function f{" is
unique up to the sign.
The system of functions { £ }oo k1o is called the Ciesielski system of order k.
Let us note that the case £ = 2 corresponds to orthonormal systems of piecewise linear functions, i.e.,
the Franklin system.
Let d be a natural number. Consider the d-dimensional Ciesielski series

jg: anfh(x)a (12)

neAd

where n = (nq,--- ,ng) € A4 is a vector with integer coordinates,
N={neZ|in>—-k+1}, x=(v1,---,24) €[0,1]¢ and

Fa(®) = foi (1) - fuy (0)-

Denote by o9 (x) the cubic partial sums of the series (12) with indices 2, that is

om(X)= D> anfalX). (13)

nn; <2 i=1,-.,d

The main result of Chapter 2 is the following theorem, proved in [2*]:

Theorem 2.1.1. If the partial sums o9 (X) converge in measure to a function f and

lim ()\q« [{x € [0,1]% : sup | (x)| > Aq}]> =0 (14)

q—00 M



for some sequence A\, — 400, then for any n € A?

= Jim | [f(x)],, fa(x)dx. (15)

In Chapter 3 we are concerned with orthonormal spline systems of order £ corresponding to the k
regular partitions.
Let T = (,)52, be a dense sequence of points in the open unit interval (0, 1), such that each point occurs
at most k times. Moreover, define ¢, := 0 and ¢; := 1. Such point sequences are called k£ admissible.
Fornintherange —k+2 <n <1, let S be the space of polynomials of order not exceeding n+ k — 1
(or degree not exceeding n+k—2) on the interval [0, 1] and { £ | +2 be the collection of orthonormal
polynomials in L? = L?[0, 1] such that the degree of 9 isn 4k —
Forn > 2, let 7, be the ordered sequence of points consisting of the grld points (tj);?zo repeated according
to their multiplicities and where the knots 0 and 1 have multiplicity £, i.e.,

To=0=1ly= =< < <7, <7)/=- =70, =1).

In that case, we also define S to be the space of polynomial splines of order k£ with points 7,,. For each
n > 2, the space S,(L]i)l has codimension 1 in Sy(bk), therefore there exists a function fT(Lk) € Sf(bk), that is
orthogonal to the space ‘S‘,(lk_)1 and || £ |2 = 1. Observe that this function £ is unique up to the sign.

The system of functions { fék)};’f:_ k42 18 called the orthonormal spline system of order £ corresponding
to the sequence 7.

Note that the case k = 2 corresponds to orthonormal systems of piecewise linear functions, i.e. general
Franklin systems.

Let’s deﬁne P ") as the orthogonal projection operator onto S with respect to the ordinary inner product
on [0, 1], fo r)dx, ie.,

(PP f,s) = (f,s), Vs €SP

We will frequently omit the parameter k and write f,,, S,,, P, instead of f, (k), (k) P,Ek) respectively.
We will use the notation A(t) <, B(t) to indicate the existence of a constant C}, > 0, such that
A(t) < Cy - B(t), where Cj, depends on the parameter k.

Definition 3.1.1. For an integrable function f, the Hardy-Littlewood maximal function is defined
as

M(f,z) = sup m/\f )t

I EY
with the supremum taken over all intervals I containing x. Consider a series

A (16)

neA

where A :=={ne€Z|n>—-k+1}.
Let {n,} be an increasing sequence of natural numbers, denote

Ay ={-k+1,--- ,ng}.
Definition 3.1.2. An admissible sequence 7 is called & regular for n, with a parameter v > 1, if

1 |AT]
- S Ng
Y ‘Az’—ﬂ

<5, —k+1<i<n,—1, q€eN, (17)

10



where A? = [7", 7", ].
We will also be interested in sequences 7 for which
n
1A

W <, forany i,j,q sothat A" D A?q“. (18)
J

Denote by S, () the n,-th partial sums of the series (16), that is

g

Sny(t) =D anfa(z) and §°(z) := sup|S,, (z)| (19)

n=—k-+2
The main results of Chapter 3 are the following theorems, which are stated in [3*]:

Theorem 3.1.3. Let the partition 7 be a k regular for n, with a parameter y > 1 and satisfy condition
(18). If the partial sums .S, () converge in measure to a function f(x) and

p—o0

lim ()\p -H{z €[0,1] : sup |S,, (x)] > )\p}|> =0, (20)

for some sequence A\, — +o00, then for any n € A
1

a, = lim [f(x)hpfn(a:)da: (21)

p—o0 0
Theorem 3.1.4. shows the necessity of condition (18) in Theorem 3.1.3.
Theorem 3.1.4. Let the partition 7 be a k regular for n,, which doesn’t satisfy condition (18) for

any 7. Then for some subsequence {n,,, }, there exists a series » | _, a, fr(x), such that its partial sums
Shm, () converge a.e. to some function f(z), and

lim ()\p~ [{z €[0,1] : sup [S,,,, (z)| > )\p}]> =0, (22)

p—o0

for some sequence A\, — +o00, but not all the coefficients a,, n € A are recovered by formulas (21).
Particularly

v Jim [ (@), Fiale)ds

Theorem 3.1.5. shows the necessity of k regularity for n, in Theorem 3.1.3.

Theorem 3.1.5. Let the partition 7 be (k + 1) regular for n,, and not k regular for n,. Then there
exists a subsequence {n,,, } and a series ) _, a, fn(x), such that its partial sums 5, (x) converge a.e.
to some function f(z) and

lim ()\p {z €[0,1] : sup [y, (z)| > )\p}|) =0, (23)

p—0o0

for some sequence \, — o0, but not all the coefficients a,, n € A are recovered by formulas (21).
Particularly

a-kt2 7 plggo/o [f(x)hpf—mz(x)dx-
11
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Wdthnthnod

UwnGuwhununcpntup pwnyuwgwé £ ubpwédnipyntuhg W Gnpbp ginthubtphg:
Unwght gnchup byhpywsd £ dpwuyihuh nwuwywl hwdwywngny 2wnph gnidwnphg 2wnph
yGpwywugdwl hwpghu: LyGup, np Spwuyihuh nwuwywlu hwdwlwnpgh $nluyghwlbtpp
hwunhuwuntd GU Yunnnp wn Yyunnp gbwihu $nluyghwubn, wy ybpw wuwd, Gpynnpn
ywnagh uwjwjuubp: LGpywwgywsd £ nluyghwih LGpGah hunGgpwih punhwupwgnud
hwunhuwgnn AH huwntgpwip: Uju nGwpnud f $nLluyghwih «huntbgpwip» uwhdwuyned k£
npwbu Upw wuybpeh agunn A, $niuyghwutpny uwhdwluwthwynwdubph hunntgpwiutph
uwhdwl:
Lywpwaqnybl U A, $ntuyghwutph nwubn, nnnug hwdwn 62dwphwun £ hGuinlyw wyunnwdp.
Gpt dpwuyhuh 2wnph o, () Jwubwyh gnedwnputph hwgnpnwyuwunipinitup puwnn gwihh
gnegwdhwnnd £ f $nluyghwyhl, q’% hwonpnwywuncejntup uwhdwuwthwy E, W
dwulwyh gndwputinh dwdnpwuwnp’ sup,, oy, () gGpwquugned E A, $nLulghwyhl «thnpn
pwaqunLpjwu» ypw, Gpp m aqgunnud £ wudbpeh, wwyw wnyjw| dpwuyhuh 2wpph a,
gnpdwyhgp Utpwhwuguynid £ dniphth inhwh pwlwalh dhgngny f $nuyghwih i,
dnLuyghwubpnny uwhdwuwithwynwdutbnph W Spwuyihup n-nn $nluyghwyh wpunwnpjwih
huntGanpwh uwhdwulu £ m-U wudtpgh dgunbhu:
Uwulwdnpwwbtu, npwbu hy,(x) $nuyghwlbn Ywpbh £ Jbpgubp hwunwunnu
dnLuyghwubpp’ Ay, (z) = A,z € [0, 1], npuinkn A, — oo, pp m — oo :
Enynnpn  gffunud  nuunwdbwuhpynud £ Qhubuyne hwdwywpgny pwquwuwwuwnhy
2wpph gnudwnphg 2wpph yGpwywugdwU hwnpgp: LyGup, np 2hubuynt hwdwywnpagp
hwunhuwunwd £ dpwuypuh nwuwywu hwdwlywnpah punhwupwgnud, npp unyuwbu
oudwé E GpynLwywu hwenpnwyuwuncpjwdp, pwyg Upw $nuyghwlutpp hwunhuwuncd Gu
Pwnan Jwngh uwjwjuutn:
8nyg £ tnpjwé, np Gpt QhubjuynL pwgdwuwwwnhy 2wnph 2* unpwuwnpnuhb Jwuliwyh
agnudwpubpp’

02(¥) = > anfu (1) - fy(Ta)

nin; <24 i=1,.-- .d

punn gwihh gniqwdhunnud Gu f $nluyghwhu W 2wpph wyn Jwulwyh gnudwplutph
Jdwdnpwlwnp® sup, o2«(X) glipwquugnud £ A, hwunwwnnluht o(1/A,) gwih niutignn
pwaunLpjwu Jpw, Gpp m agunnud £ wudtpgh, www wnyw| hubuynt 2wpph a,
gnpdwyhgp Jtipwywuguyned £ dniphth inhwh pwlwalh dhgngnd f $nuyghwih A,
hwuwnwwnniluutpny uwhdwUuwhwynwdubph W 2hubuynt n-pn $nLuyghwih wpunwnpwih
huunbgpwh uwhdwul £ m-U wuytpgh dgunbhu:
Enpnpn ginthup Udhpdwd B pwpdp Ywpgh oppnunpdw] uwwju  hwdwywpgbpny
dhwwwuwnhy 2wpph gnwwphg 2wpph  yGpwywluguwl hwpghu: LaGup, np  wju
hwdwlwnpgbpp hwunhuwunwd GU QhuGuynt hwdwlywnpah punhwupwgnid, npu wnpnGu
ouqwéd E ng pb GpynLwywlu hwenpnwywunipjwdp, wj; ophbwly Ywdwjwlywl hpwnphg
wnwnptnp wunwdJutpny [0,1] hwwndwdh hwgnpnwywunipjwdp:
Thunwpyywoé Gu oppnunpUw uwylwju hwdwlywnpagp ounn «nGgnLywn»
hweonpnwywuncpnLulubn, npnug  hwdwp  hwplwlb  B-uwjwjuubph  Ynhgubnh
Gnywnnie)ntuubnh  hwpwptpnegyntup uwhdwuwdhwy £t W hpwp  hwenpnnn
nnnhnuduGphu hwdwwwwnwuhuwu B-uwjwjuutGph yphsutph GpywpnipjnluutGpp Jhdjwug
hwJGdwwnwywl G, Gt Ynhsgutnhg UGYU puywéd E UjnLup JGg:
Uwuwgnigyt| £, np Gpbt «ntgnLywn» hwenpnwywuncpjwdp sUujwd oppnunpdw) uwjwju
hwdwlwnpgny 2wpph Jwulbwyh gnudwnpubph hwenpnwywunipintup  puwn gswithh
gnegwdhinnd £ f $nluyghwihu W 2wpph wyn Jdwulbwyh gndwputGph Jdwdnpwlwnp
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gbpwqwugnud £ A, hwuwnwwnnupu o(1/),;,) swith niubgnn pwagunipjwl Jypw, Gpp m
agunnud £ wuybpeh, www indjwi 2wnph a, anpdwyhgp ytpwywuquyned £ dnphth tnhwh
pwuwdlh Jdhengny f $nluyghwih A,, hwuwnwwnniuubpny uwhdwlUwthwynwdubph W
onppnunpdw uwwjt hwdwlwngh n-npn $ntuyghwh wpunwnpwih huntgpwih uwhdwuu
E m-U wudtnpoh dguntihu:

Pwgh wyn gnyg £ vipdt, np ybpghu ptnptGunwd «nbgniywn» hwenpnwywunipjwu ytple
U2Jwdé wwhwuelbiphg Gpynwul £] Ewywu Gu. ywwjdwuutbphg nplt JGYQU gpwuwpwnpnn
hwonpnwywuncpeyntuutph hwdwnp Ywnnigytb| GU Upwlg hwdwwwwnwupuwlu oppnunpduwi
uwluwu hwdwywngny 2wnpptnph ophuwyutn, npnug hwdwp pwywpwnpywé Gu pbnptuh
Juwgwé wuwjdwuubnp, uwyuwju gnpéwyhgubph ytpwywugdwu ybnp Lpywéd pwuwalLtnp
6odwnhuwn gGU:
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3ak/oueHue

Juccepraius cOCTOUT U3 BBECHUS U TPEX IJIaB.

[TepBast raBa MocBslIeHa BOIPOCY BOCCTAHOBJICHMS psAa MO CyMME psijia C MOMOIIbIO KJIaCCHUYECKOM
cucteMbl @paHKINHA. 3aMETUM, 4TO (PYHKIMH KJIacCHuecKoi cucteMbl DpaHKIIMHA SBIISIOTCS KyCOUHO-
JUHEHHBIMU (YHKIUSAMM, IPYTUMH CIOBaMH, CIUIailHaMu BTOporo nopsaka. llpencraBieH uHTerpas
AH, sBnsromuiics 00o0menueM narerpaia Jledera ot Gpynkuun. B aTom cityuae “unTerpan” GyHKIHNA
f ompenensiercst Kak MpeneNT HHTETPAJIOB OT €€ OTPAaHUYEHHUH ¢ QYHKIHUSIMHA h,y,, KOTOPBIE CTPEMSTCS K
OECKOHEUHOCTH.

Onwucansl knacebl GyHKUUH N, JUISI KOTOPBIX BEPHO CIEIYIOLIEE YTBEPIKICHHUE:

€CJIM MOCIE0BATENbHOCTh YaCTHYHBIX CyMM psifia DpaHKiuHa 0y, () cXOmUTCs 10 Mepe K (QyHKINH
[, nocnenoBarensHOCTh L orpaHHYeHa, @ Ma)XOPAHTA YaCTUYHBIX CYMM SUp 0, () MPEBOCXOMHT
GbyHKIHIO h,, HA “MajoM MHOXXECTBE”, KOTAA M CTPEMHUTCS K OCCKOHEYHOCTH, TO KOd(h( UIIUEHT a,
3aaHHoro psiia OpaHKIMHA MOXKHO BOCCTAaHaBUThH MUCMONB3Ys (popmyny Tuna dypbe: OH SABISETCS
IPE/IeJIOM HHTErpajioB OT MPOU3BEICHNS OrpaHMYeHN QyHKIMU [ QyHKIUAMHE D, 1 n-oi QyHKIHEH
@DpaHKIMHA IPU CTPEMIIEHHUH T K OECKOHEUHOCTH.

B wactHoCTH, B KauecTBe QYHKIHMH Ay, () MOXKHO B3SITh MOCTOSHHBIC QYHKIUH Ny, (7): iy (2) = Ay €
[0, 1], rre A, — 00, Koraa m — oo.

Bo Bropoil maBe ucciexyercs BOIPOC BOCCTAHOBICHUS PSAOB IO CyMMeE KpaTHBIX PSAOB IO CHCTEME
Uucenbckoro. OOpaTuTe BHUMaHHUE, YTO cUCTeMa UHMCENbCKOTO SIBISIETCS 0000IIEHNEM KIIaCCUIeCKOM
cucrteMbl DpaHKINHA, KOTOpask TAaKXKe POXKAAETCS U3 IABOMYHON MOCIIEA0BATEIbHOCTH, HO €€ (DYHKLUHU
NPEACTABIAIOT COOOH CIIIaiiHbl BEICOKOTO MOPSIKA.

[Toxazano, 4to ecnu 2# KyOU4YecKue YaCTUYHbIE CYMMBI KPaTHOTO psifa YnuCenbCKoro

Oon (X> = Z anfm (xl) 'fnd(xd)

n:n; <2t i=1,--,d

CXOATCS 1O Mepe K QYHKIMH f M MaKOPAHTE STHX YACTHUHBIX CYMM SUD,, 02« ( X) IPEBBIIIAET KOHCTAHTY
Am Ha MHOKeCTBE Mepbl 0(1/),,), KOTaa m CTpeMHTCs K GECKOHEYHOCTH, TO KOO(DOHIMEHT @, TaHHOTO
psina Yncenbckoro BocCTaHaBiIMBaeTcs o Gopmyse tuna Oypbe: OH SBISETCS MPEAETIOM WHTETPajoB
OT TPOU3BEJCHUS OTpaHWuYCHH (QYHKIMU [ KOHCTAaHTaMH A, U n-oil (yHkumeir Unceabckoro npu
CTPEMJICHUH 1M K OECKOHEYHOCTH.

TpeTbs raBa NOCBALIEHA BOIPOCY BOCCTAHOBIICHUS PSAA0B 110 CyMME OOBIUHBIX (OTHOKPATHBIX ) PSIIOB 110
OPTOHOPMUPOBAHHBIMU CUCTEMAaMH CIUIAHHOB BHICOKOTO MOPSIKA. 3aMETHM, YTO 3TH CUCTEMBI SIBIISIOTCS
00o01eHueM cucteMbl UncenbeKoro, KOTOpble POXKIAIOTCS HE M3 JIBOMYHOW MOCIEI0BAaTENbHOCTH, a,
HalpuMep, U3 MPOU3BOJIBHOM NOcen0BaTeaIbHOCTH oTpe3ka [0,1] ¢ pa3nuyHbIMU YsIeHaAMH.
PaccMaTpuBaroTcst «peryisipHbIe) IOCIEA0BATEIBHOCTH, TOPOKIAIOIINE OPTOHOPMHUPOBAHHYIO CHCTEMY
CIUIAliHOB, Ul KOTOPBIX OTPAaHUYEHO OTHOIIEHHE JUIMH HOCHUTENEeH cocelHUX B-ClIaifHOB U AJUHBI
HOcUTeNel B-CrulaifHOB, COOTBETCTBYIOLIMX MOCIIEI0BATENIbHBIM Pa30UeHHSIM, TPOIOPIIMOHANIBHBI JPYT
JPYTY, €CII OIUH U3 HOCUTEJEH JIEKHUT BHYTPH JAPYTrOro.

JlokazaHo, 4TO €CllM IMOCIIE0BATEIbHOCTh YaCTHYHBIX CYMM psJa IO OPTOHOPMHPOBAHHOW CHCTEME
CIUIAIfHOB, MOPOXICHHON «PETYJSPHOI» TOCIEI0BATEIbHOCTIO, CXOAUTCS MO0 Mepe K QpyHKIHMH [ U
Ma)KOpaHTa 3TUX YaCTUYHBIX CYMM IPEBbINIACT KOHCTAHTy [ambda,, Ha MHOXecTBe Mepbl o(1/\,,),
KOTZla ™m CTPEeMHTCA K OSCKOHEYHOCTH, TO KO3(QGUIMEHT a, NAHHOTO psAAa BOCCTAHABIMBACTCS IO
dopmyne tuna Oypbe: OH SABISIETCSA MPEEIOM MHTErPaloB OT MPOM3BEIEHHs OrpaHUYeHU (QyHKINN
f xoHCTaHTaMu A\, 1 -0l (PyHKIKEH OPTOHOPMUPOBAHHOM CUCTEMBI CILIAIHOB MIPU CTPEMIICHUH M K
OECKOHEUHOCTH.

Kpome Toro, Obput0 moOKa3zaHO, 4YTO 00a YyKa3aHHBIX BBIIIE TPEOOBAHHS K «PETYIIPHOMN»
MOCJIEIOBATEIbHOCTH B IIOCJIEAHEH TeopeMe CYILIECTBEHHBI: A MOCJel0BaTebHOCTEH, He
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YAOBJIETBOPSIIOIUX OJHOMY M3 YCJIOBHH, IIOCTPOEHBI INPUMEPHI PANOB [0 COOTBETCTBYIOIIMM UM
OPTOHOPMHUPOBAHHBIM CUCTEMAM CIUIAWHOB, U1 KOTOPBIX BBIIOIHSIIOTCSA OCTAJIbHBIE YCIOBHS TEOPEMBI,
HO IMIpHUBE/IEHHBIE BblIle ()OPMYIIbl BOCCTAHOBICHUS KO3(DPHUIIMEHTOB HEBEPHBI.
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