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General Characteristics Of The Work

Actuality of the subject. The clustering problem is an unsupervised learning
problem to group similar observations. Time series clustering, in turn, is a family of
clustering methods that study realizations of random processes as samples.

This topic has deep historical roots, tracing its origins back to some of the earliest
statistical studies in the middle of the 20th century. The rapid growth of computa-
tional power and the increasing abundance of time series data, starting in the late
20th century, has led to a renaissance in this field, transforming it from a niche topic
into an area of broad and pervasive importance.

Due to their unsupervised nature, time series clustering algorithms have a broad
range of uses in numerous fields. In finance, for instance, clustering techniques are
used to group stocks with similar price movements, helping portfolio managers di-
versify their portfolios and hedge against risk. In medicine, time series clustering
allows for the identification of common patterns in patient data, leading to more
accurate diagnoses and more effective treatment plans. The field of climate science
also benefits from this technique, as it allows for the classification of weather pat-
terns, aiding in the prediction and understanding of climate change. These and
many other applications demonstrate the practical relevance and broad impact of
time series clustering. [1]

Purpose and goals of the thesis. Although the literature on time series clus-
tering is extensive, it is limited by algorithms and methods with strong theoretical
evidence. To fill this gap, several approaches based on theoretical results of random
processes have recently been proposed to study the asymptotic properties of time
series clustering algorithms. A time series clustering algorithm is asymptotically
consistent if it can recover the ground truth clusters, for large enough samples. The
goal of the thesis is to examine the consistent clustering conditions and methods
for the time series datasets generated by model-based procedures. This includes
an examination of the datasets generated by well-known models ARMA, GARCH,
ARMA-GARCH, and ARIMA. In the thesis, we also conduct extensive experiments
to show the practical applicability of the methods discussed.

The object of research. The object of this research is a time series dataset
generated by some of the common time series models such as ARMA, GARCH,



ARMA-GARCH, ARIMA models. We examine the several metrics defined in the
space of discussed models, clustering algorithms, and clustering evaluation measures.
In the application section, we examine the foreign exchange (FX) market.

The methods of research. The methods of research include both theoretical
and practical methods. We define the asymptotically consistent clustering problem
for common time series models and provide a generic framework for clustering time
series datasets. The asymptotic consistency of a described algorithm is proved by
using asymptotic properties of defined metrics and their empirical estimates. The
numerical experiments and applications are implemented with the Python program-
ming language.

Scientific novelty. The theoretical novelty of the thesis is listed below.

- We define the theoretical dissimilarity measures for ARMA-GARCH models.
We define empirical dissimilarity measures for the common time series models,
including ARMA, GARCH, ARMA-GARCH, and ARIMA models, and show
their asymptotic consistency.

- We define the asymptotically consistent clustering problem for time series data
generated by the above-mentioned models. For clustering time series data
generated by model-based procedures, we examine two problem setups. In
the first scenario, when the orders of the underlying models are known, we
show the strong asymptotic consistency of the described clustering algorithm.
In the second problem setup, we assume that the underlying processes are
unknown, and only the upper limits of the orders of the models are known. In
this problem setup, we prove the weak consistency of the clustering algorithm.

- We applied the above-mentioned methods for the dynamic clustering of the FX
market. With an empirical approach, we showed that the proposed methods
are applicable to the problem of clustering of the FX market and analyzing
the dynamic structure of the market, and resulting clusters reflect several
important characteristics specific to the FX market structure.

Practical significance. The practical novelty of the thesis is listed below.

- To show the practical applicability of the discussed methods, in this thesis,



we conduct several experiments. We evaluate several model-free algorithms
for clustering time series datasets generated by GARCH processes. Several
experiments show that model-free, algorithms generally speaking do not show
the desired asymptotically consistency properties. In contrast to model-free
algorithms, we also evaluated the methods proposed in this thesis, which show
strong performance of clustering time series datasets generated by the ARMA,
GARCH, and ARMA-GARCH processes.

- We consider the dynamic clustering of the foreign exchange market. The re-
sulting clusters incorporate several important properties of the FX market. 1.
Currencies with fixed exchange rates mostly appear in the same cluster. 2.
The resulting clusters reflect the relationships of currencies circulating in the
same geographical region. 3. Clusters reflect economic associations between
countries. 4. Clusters reflect the industrial connections between currencies
(countries).

- Having the results of the dynamic clustering of the foreign exchange market, we
describe a market stability analysis method by comparing the clustering results
for each consecutive period of time. We showed that the dynamic comparison
of the FX market also can serve as a useful tool to analyze the effect of major

economic events on the market structure.
The approbation of obtained results. The results of the thesis were reported

- in the scientific seminars held in the Department of Mathematical Modeling
in Economics of the Faculty of Economics and Management of Yerevan State

University,

- in the 14th International Conference on Computer Science and Information
Technologies CSIT 2023 September 25 - 30, 2023, Yerevan, Armenia. https:
//csit.am/2023/proceedings/ITCT/ITCT_1.pdf

- in the internal scientific seminars of the international artificial intelligence com-

pany TurinTech.ai
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- G. Adamyan, “Weakly consistent offline clustering of ARMA processes,” Jour-
nal of Contemporary Mathematical Analysis, vol. 58, no. 3, pp. 183-190,
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The structure and the content of the thesis. The thesis consists of an
introduction, four chapters, a summary, and a bibliography. The number of refer-
ences is 62. The thesis consists of 86 pages with the Appendix section and 77 pages

without it.



The Content Of The Thesis

In chapter 1, we reviewed basic time series concepts, common time series mod-
els, and consistent model estimation conditions. The definitions, and stationarity
conditions of ARMA, GARCH, and ARMA-GARCH models are presented.

Chapter 2 is dedicated to the review of existing approaches of time series cluster-
ing, clustering accuracy evaluation metrics and applications of time series clustering.

In chapter 3, we provide the main theoretical results of the thesis. We studied
the problem of consistent clustering of time series datasets generated by the most
common models including ARMA, GARCH, ARMA-GARCH, and ARIMA models.
We start, by defining a consistent clustering framework and consistent clustering
algorithm for clustering ARMA processes. The framework of asymptotic consistent
clustering algorithms for ergodic and stationary processes in online and offline prob-
lem setups was first introduced in [2]. We are given a time series dataset with N
samples D = {x;}¥,. We assume that each x; is generated from one of the x un-
known ARMA process with unknown forecasting function F*) k= 1,2, ..., k, where
x < N. Note that time series samples may have arbitrary lengths, and we denote
the length of x; time series by n;.

Definition 3.1.1 (Ground-truth G). Let G = Gy,...,Gy, be a partitioning of the
set {1,2,.... N} into x disjoint subsets Gy, G, # 0, k = 1,2, ..., 5, such that the
forecasting function of the process that generates x;, i = 1,2, ..., N is F®) for some
k=1,2,...,k if and only if i € Gi. We call G the ground-truth clustering.

We denote by X the underlying ARMA process for the cluster G,. The domain
of the clustering function f is the finite set of samples D = {x;}¥_, and a parameter
% (the number of target clusters) and the range is a set of partitions f(D,x) :=
{C4,...,Ck} of the index set {1,2,..., N}. The following definitions represent the

rigid formulation of the asymptotically consistent clustering.

Definition 3.1.2 (Consistency: offline settings). A clustering function f is con-
sistent for a sel of sequences D if f(D,k) = G. Moreover, denoting by n =
min{ny, ...nn}, [ is called strongly asymptotically consistent in the offline sense
if with probability 1 P(In'Vn > n'f(D,k) = G) = 1. We call it weakly asymptoti-
cally consistent if lim,, ..o P(f(D,r) =G) =1



To construct an asymptotically consistent algorithm, we start by defining a metric
on ARMA processes. Let us denote by £ the class of invertible ARMA models. The
invertibility assumption ensures that X; can be represented in terms of its past
values according to the AR(o0) formulation.

W(B)Xt == €4 (311)

where 7(B) = 0(B) ' x¢(B) =1 — Z;‘;l m;BI. The coeflicients of sequence 7, are
determined by the following recursive equations ([3]: p. 86):

q
Tt ki =—¢;, i=0,1,.. (3.1.2)
k=1

where ¢ := —1,¢; :=0for j > p,and 7; ;= 0for j < 0. Having (3.1.1), we note that
given initial values and known orders, any process { X;} € £ is fully characterized by
the sequence 7. Defined sequence also completely specifies the forecasting function
Fi = E[Xe| Xi—1, Xi—o, .| =11 Xs—1 + m X9+ ... + ¢ of the processes {X;} [4].
Recalling the (3.1.1) representation of the invertible ARMA process, Piccolo
in work [5] introduced metric on £ as a measure of structural diversity between
stochastic processes X(l)7 X@ € £. The metric function dprc on L is defined as

1/2
(e o]

dpre(XW, X)) = Z (m15 — 7T2,j)2 (3.1.3)
§=0

where {m1,;}52, and {m,;}32, is the 7 sequences for the X and X processes
respectively. The dp;s distance is well defined for all X € £ and can be computed
even for processes with arbitrary orders and parameters. As for given ARMA process
X the sequence {7, ;}32, fully characterizes the forecasting function F, therefore,
the defined distance between two ARMA processes, with given orders, is zero if,
for the provided same set of initial values, the corresponding models produce the
same forecasts [4]. Having this fact, if the x; and x; are two realizations of the two
invertible ARMA processes X ¥ and X, thenif i, j € Gy for some k € 1, ..., s, then

given the same initial values the processes in the same cluster, will produce the same



forecast, since the corresponding distance between processes dpyo(X @) X0 )) =0.

We aim to demonstrate certain properties of the d pro measure that will be useful
for subsequent results. Let us denote by 8 = (¢1, ..., ¢p, 61, ...,0,) the parameters
vector of the process {X;} € £, and by B = {8 € RP14 : 0(2) is invertible}, then
the following proposition holds.

Proposition 3.1.1. The m; = h(8),j = 1,...,00 is a continuous function on B°.

Let XM X3 ¢ £ be two invertible ARMA processes, with (p1,q1), 8%, 71 =
{7r17j};?‘;0 and (pa,q2), B2, ™o = {ma };?‘;O orders, parameter vectors and associated m
coefficients respectively. Denoting by B¢ = {8 € RPi 19 : roots of the 0(z) are distinct}
for i = 1,2 we can formalize the following important proposition.

Proposition 3.1.2. (Continuity of dprc) dpro(-,-) is continuous as a function of
the vectors 8Y, 8% on B x B2.

In addition to the properties listed, we can show that dprc has a weakly con-
sistent estimator dprc. Let us consider samples x; = {a}, 2}, .., 2} } and xo =
{22,22, .. } generated from the X (1) and X ARMA processes. Then the QMLE
for the estlmatlng ARMA(p,q) processes has the following form:

1 < D T )2
52 LITT 1 logo® (3.1.10)

t=1
We define the estimator of dpro the Euclidean distance between sequences 7;
(i = 1,2) of the estimated parameters with QMLE and samples x1, x5. Let us denote

the empirical estimates of dpro as follows

1/2
dpro(xi,x2) Z (F1j — 7o)
j=1
1/2
dpro(xy, X)) Z — ;) (3.1.11)
j=1

Ne}



where {7; ;}7_; are given by (3.1.2) and parameters vectors ﬁAl estimated by QMLE
(3.1.10).

We proved the consistency of these estimators for two problem configurations,
firstly, for the case where orders of the {Xt(l)}7{Xt(2)} € £ ARMA process are
known and for the case where exact process orders are unknown but are given some
constants positive Ppaa, Qmae such that the orders of {Xt(l)}7 {Xt(z)} c £ ARMA
process the p1,p2 < Praz and g1, 92 < Qmaz-

Proposition 3.1.3. If the orders of the {Xt(l)}7{Xt(2)} € L ARMA process are
known, then under stationarity condition the C/l\ch(XhXQ) and C/l\P[c(XhX(l)) dis-

tance estimators are strongly consistent
dpre(X1,%2) —= dpre(XW, X®)
n—oo
gpfc(x17X(2)) a8 dPIC(X(1)7X(2))
ny—> oo
This approach is intuitive and ensures almost sure consistency but it limits us
to applying the estimated distance to a clustering problem defined earlier since it is
impractical to assume that the orders of all underlying processes are known. The

next proposition provides a more generic framework for estimating Autoregressiv

distance.

Proposition 3.1.4. If there are given Pran, @mez € NT such that the orders of
{Xt(l)}7 {Xt(z)} € L ARMA process the p1,ps < Ppaz and q1, 92 < Qmaz, then under
stationarity condition the C/l\P[c(XhXQ) and C/l\ch(XhX(l)) distance estimators are
weakly consistent
dpro(x1,x2) HL@) dpre(XW, X@))
dpre(x1, X@) % dpro(XM, X))
ni (e o]

It is a noteworthy observation that for any X XU € £ and x;,x; € D the
distance dpro and their empirical estimate C/l\p 1c satisfy the triangle equations.

10



dpic (X(i)7X(j)) <dpre (X(i)7xi) +dpre <X¢7X(j))
&\P[C‘ (Xi7X(i)) < &\P[C‘ (x4,%5) + &\P[C‘ <Xj7X(i)) (3.1.12)

dpro (xi,x5) < dpro (XhX(i)) +dpro (me(i))

Algorithm 1 Clustering ARMA models

Require: D, &, (Prass Qmas)
Estimate models and model parameters
for ¢ :Al..N do
mt, Bt estimate model parameters
end for
Initialize k-farthest points as cluster-centres:
C| <— 1
Cl < {Cl}
for k =2..xk do R
C 4 argmaxming—q g—1d (xi7 xcj)
i=1.N
Ck < {Ck}
end for
Assign the remaining points to closest centres:
for i=1..N do R
k<« argmingc s ¢, d(xs,%;)
end for
OUTPUT: clusters C1,Csy,...,Cy,

We want to mention that notations in Algorithm 1 are provided for the general
case of model-based clustering since the model estimation and the distance estima-
tors can be different for different problem configurations. If the underlying model
orders are known then the model parameters are estimated with QML (3.1.10) and
for the model selection the BIC penalized QMLE. We start by formulating the the-

orem of the strong consistency of the Algorithm 1.

Theorem 3.1.1 (Strong consistency of Algorithm 1). Assuming that the orders of
all underlying ARMA processes are the same and known. Then if the target number

of clusters x is known, then Algorithm 1 is strongly asymptotically consistent.

11



The proof of the theorem is the same as Theorem 11 in the [2] since the defined
distance estimators are strongly consistent (Proposition 3.1.3) and satisfy the trian-
gle inequalities (3.1.12). The following theorem is based on Proposition 3.1.4 and

provides a more general framework for clustering ARMA processes.

Theorem 3.1.2. (Weak consistency of Algorithm 1) Assuming that there exists
(Prazy Qmaz) such that orders of all underlying ARMA processes are less than Pz
and Qmaz, and the target number of clusters k are known, then Algorithm 1 is weakly
asymptotically consistent. Moreover, for the given n € (0, 1) there exists n, such thal

if Pin = MiNe1 n 1y > 1, then
P(f((D,r)) = G) = (1 = (N — r)(4 —4n))(4n = 3)"*""

In the section 3.2, we discussed consistent clustering of the time series dataset
generated by the invertible GARCH(p,q). If the operator (1 — 8(B))~! exists, then
we have the so-called ARCH(co) representation of the GARCH(p,q) process ([6],

[71)-

of = o+ Y tier (3.2.1)
i=1
where
Yo = e (3.22)
0= 2.
1= 15

and coeflicients ; are the coefficients of the characteristic polynomial of the (1 —
B(B)) ta(B) and can be determined with the following recursive equations [6].

bi =i+ Y B (3.2.3)

j=1
where n* = min{p,i — 1}, B; = 0 ¢ > pand o; = 0 ¢ > ¢. Having (3.2.1)
representation of the GARCH(p,q) process we define a metric on U as follows. Let
{X:} and {Y;} are two stationary, invertible GARCH processes and ¥x = {¢; x}7°,
and ¥y = {¢; yv};2, are the corresponding sequences of {X;} and {Y;} obtained

12



from the equations (3.2.2) and (3.2.3). Then

1/2
(e o]

d(X:,Y:) = Z(%,X — 1y )’ (3.24)

Jj=0

Under the same definitions of asymptotically consistent clustering, the empirical
estimate of the metric (3.2.4) all the results discussed in the previous sections can
be established also for the time series dataset generated by GARCH(p,q) processes
since the exponential decrease of the coefficients v; and the consistent model selection
for GARCH(p,q) processes discussed in Proposition 1.5.2 in the thesis.

Another interesting extension of the presented results is a case of a clustering
time series dataset generated by ARMA(p, ¢) models with GARCH(p', ¢') errors.
This problem is discussed in the section 3.3. We denote the class of ARMA(p,
q)-GARCH(p', ¢') processes with invertible ARMA and GARCH components as
LU. As previously explained for the process X; € LU, we can derive two infinite
sequences from the AR(co0) and ARC H (o) representations, which fully characterize
the model X;. For given X, € LU, and positive constants v and v (where v +v = 1),
we define the norm of the processes X, in LU as follows.

1 Xellu,o = w2 + l[$]]2 (3.3.1)

And the distance between two processes {X;},{Y:} € £U is defined using the ||-||u v

norm.

1/2 1/2

(e8] (e8]

d( X, Ye) =u Z(Wj,x -y )’ +w Z(%,X — iy )’ (3.3.2)

§=0 §=0

Since the consistent estimation of the QMLE and BIC penalized QMLE of the
ARMA-GARCH processes and the continuity of the metric (3.3.2) from the pa-
rameters of the considerable models it is easy to see that all the previously discussed
results are true for the time series datasets generated by the ARMA-GARCH models.

In the section 3.5 we discuss the theoretical similarities and differences between
the proposed methods with the existing model-based approaches. The key points

13



are summarized here.

e We established conditions for an asymptotically consistent clustering algorithm

for the common time series models.
¢ Discussed method does not require conditional independence of samples.

e We propose clustering GARCH processes based on their ARCH(co) represen-

tation, avoiding assumptions on the invertibility of certain polynomials.

¢ The consistency of the provided algorithm is obtained with the QMLE, which
will keep it consistent even if the Gaussian assumption is not perfectly met,
though it may be less efficient than MLE under certain conditions.

Section 3.6 is dedicated to some important considerations that need to be
taken into account for the practical implementation of the discussed methods. Here
we want to note that although the Algorithm 1 is asymptotically consistent, other
algorithms can also be implemented. This is achieved by pre-computing the distance
matrix C = [c?(xi7 x;)]s,; for all sample pairs (x;,x;), totaling N (N —1)/2 distances,
and then employing clustering algorithms specifically designed to operate on distance
matrices. A commonly selected option is the K-Medoids algorithm [8].

In chapter 4, we demonstrated the results of several numerical experiments and
practical applications of the methods discussed. We start with an experimental
comparison of model-free algorithms for clustering time series datasets generated by
GARCH processes. Motivated by [9], for comparison we choose well-known partition-
based time series clustering models: K-Means, K-Means with dynamic time warping
and DTW barycenter averaging, K-Shape and Kernel K-Means models. Further-
more, we can find open-source implementations of these algorithms [10].

To evaluate non-parametric models, we simulate random datasets with different
setups. In the first experiment, we measure the ability of the models to cluster
different numbers of clusters. In Table 4.1.1, we present the results of the first
experiment evaluated with the AMI metric. We can see that the KM-DTW model
outperforms other models.

In the second experiment, we measure the asymptotic consistency of the discussed
models. We generate datasets with 5 clusters and 100 samples in each cluster. We

14



K KM-E KM-DTW k-Shape KKM-GAK

2 | 0.003+-0.001 | 0.325+-0.403 | 0.004-+-0.009 0.003+-0.002
4 | 0.004+-0.001 | 0.463-+-0.129 | 0.024-0.007 0.002+-0.001
6 | 0.0184+-0.016 | 0.5784-0.151 | 0.043-+-0.021 0.001+-0.0005
8 | 0.006+-0.003 | 0.4984-0.077 | 0.005+-0.011 0.001+-0.0005
10 | 0.005+4-0.01 0.6244--0.03 | 0.062-+-0.022 | 0.00014-0.00005

Table 4.1.1: AMI score for different

set T'= 1000 and consider 5 intervals on the time axis. We train and evaluate models
in the first interval and consequently add a number of samples. From the second
experiment, we observed that the KM-DTW model outperforms other models, but
we do not observe significant asymptotic patterns.

The section 4.2 is focused on the evaluation of proposed methods with the al-
ready discussed KM-DTW model. We start this section by providing experimental
results for the asymptotic behavior of the distance estimates. Conducted experi-
ments show that the proposed estimates show desired asymptotic properties. To test
the convergence we conduct a two-way Wilcoxon signed-rank test with the null hy-
pothesis as the estimated and the real values are different. The rates of minimal time
sample sizes for the convergence for the given examples are also highlighted in the
thesis. The results for the experiment with the dp;o and its estimator are presented
in Figure 4.2.1. The vertical dotted line presents the true value of dp; (X", X(2)).

Taking into account results from the previous section from the model-free al-
gorithms we will consider only the KM-DTW model as it outperforms all other
considered methods. From the mentioned above we will evaluate the Algorithm 1,
K-Medoids, and KM-DTW methods on randomly randomly generated models. To
generate the presented models we fix the Prap = Qmaz = 3, and generate 5 (number
of clusters x) different model orders and parameters. In each step, we ensure that
the generated parameters satisfy stationarity and invertibility conditions.

To evaluate the asymptotically consistent properties of the clustering algorithms,
we generally follow the same expanding window approach described earlier. For each

15



200 400 600 800 1000 1200 1400

(a) Estimation of dPIC(X (D), X (2) with (b) Estimation of dpiC (X (1),X (2)) with
known model orders. unknown model orders.

Figure 4.2.1: Estimation of dPIC(X , X ).

underlying model, we generate 50 realizations with 1000 samples each. We set up,
the 200-step size and in each step fit all 3 models and evaluate clustering results with
an Adjusted Mutual Information score. The described process is repeated 10 times
for averaging purposes, and the evaluation results are presented in Figure 4.2.3.

Figure 4.2.3: Asymptotic properties of Algorithm 1

From Figure 4.2.3 it can be observed that Algorithm 1and K-Medoids models are
outperforming the KM-DTW model in every time window. The clearly increasing
AMI score for both models are indicators of the asymptotic consistent properties of

16



the models.

To ensure the robustness of the general comparison procedure, we did not fix
the specific model structures in the data generation procedure, therefor underlying
model parameters and the realizations are selected randomly. We fix § > 1, Pz =
Qmaz = 3, and the number of samples in each realization to 1000. We also range
the number of clusters x from 2 to 6, to show the dependence of algorithms on the
number of clusters. In each step, we generate random processes according to the &,
invertibility, and stationarity constraints, and for each process, we generate 100 time
series each having 1000 samples. We divide the data set into training and testing
datasets with a 0.25 test ratio and evaluate the results on the test dataset with the
AMI metric. The results of this experiment are provided in Table 4.2.1. For general
evaluation, we generate GARCH(p, ¢) processes with Praz = Qmaz = 3, § > 1,
and 7,4, = 2000 since we previously observed that the distance between GARCH
processes is converging with higher values than in the case of ARMA processes. Even
more, we observed that for the smaller values (rn,,;, < 500) the estimated GARCH
processes were nearly nonstationary, and g = Pi;ﬁ vanishes.

A similar experiment is conducted for general evaluation of the provided methods
to cluster time series datasets generated by ARMA-GARCH processes. For the case
of ARMA-GARCH processes, we limit with x = 4 for the reason mentioned earlier.
As can see in Table 4.2.1 Algorithm 1 inherits the same issues from the case of
GARCH processes and we do not observe significant improvements of AMI metric
from the baseline model KM-DTW. In this case also K-Medoids model outperforms
the rest of the approaches.

As mentioned earlier, the consistency of the discussed algorithms is proven to
have the fact that the consistent distance estimators are providing the conditions
that the time series dataset is satisfying so-called strict separability conditions. To
measure the effect of the separability assumption, the following experiment is con-
ducted. We fix k = 2 and for each model ARMA, GARCH, and ARMA-GARCH
we generate underlying models that have a predefined distance § measured with the
corresponding distances. Then the ¢ is increased during the experiment. The results
of the experiment are shown in Table 4.2.2. From Table 4.2.2 that we can observe

that algorithms are dependent on the separability condition and for the lower level of

17



Process k | Algorithm 1 | K-Medoid KM-DTW
2 1.0+0.0 1.0+0.0 0.48 £0.45
ARMA 41 09+£0.093 | 0.994+0.02 | 0.514+0.035
6| 085+0.11 [ 093+£0.054 | 053+0.1
21 095+0.06 | 0.92+0.11 0.8+0.4
GARCH 4] 0744006 | 0.96+0.05 | 0.51+0.21
6 _ _ _
2 1.0+0 1.0+0 0.4+0.49
ARMA-GARCH | 4 | 0.664+0.35 1.0+0 0.66 £ 0.9
6 _ _ _

Table 4.2.1: AMI score for clustering processes with different x values.

separability the clustering results are poor. Despite this fact, the clustering results
are reliable from § > 0.4.

In the section 4.3 we show the practical applicability of the proposed methods,
This

section includes a detailed discussion about the considered dataset, methodology,

for clustering and analyzing the structure of the foreign exchange market.

and obtained results. We download the daily exchange rates from 2002-01-01 to
2023-01-01 via APILayer! API, which includes the 44 top-traded currencies. The
list of currencies included in the analysis is available in Table 4.4. To analyze the
dynamic structure of the FX market, we divide the time period from 2002-01-01 to
2023-01-01 into equal time periods and perform the model estimation and clustering
procedure in each interval. The selection of a long time period will incorporate more
information in time series but, having the fact that currencies generally speaking
have dynamic structure and regime changes, it is possible to skip important changes
in market structure. On the other hand, the smaller time periods can affect model
estimation resulting in a poorly estimated distance matrix. Having this consideration
we examined clustering in different time periods and chose the clustering period of 6
months (totaling 42 clustering periods) as a good trade-off between consistent model
estimation and the possibility to examine the dynamic structure of the FX market.

The analysis of the dynamic behavior of the FX market is done, by clustering

Thttps://apilayer.com/marketplace/exchangerates_data-api
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Process J range Algorithm 1 | K-Medoid
0<d<02 | 049£0.37 | 0.67+0.21
02<d<04] 093£0.13 | 0.93£0.09

ARMA 04<d<06 ] 091+£0.17 1+£0
0.6 <0<0.8] 082+0.25 | 0.85+0.25

08 <ds<l 1£0 1+£0
0<d<02 | 023+£0.24 | 0.27£0.18
02<d<04] 077£0.19 | 0.88£0.12
GARCH 04<d6<06 ] 049+£0.33 | 0.82£0.22
0.6 <6<0.8] 081+£0.13 | 0.83£0.09
08 <ds<l 0.8+0.18 | 0.93+0.09
0<d<02 | 064£044 | 0.7+£0.46
02<d<04] 078+£0.36 | 0.87£0.26
ARMA-GARCH | 04 <4 <06 | 0.59+0.48 | 0.99+0.04
06 <d<08 0.5+£0.5 0.93+0.11
08 <ds<l 0.8+04 0.96 + 0.09

Table 4.2.2: AMI score for clustering processes with different § values.

different time periods and comparing clustering results. In each time interval, we
estimate the underlying processes and compute the distance matrix D. Due to
the dynamic structure of the FX market, it is natural to assume that, the number
of clusters can change over time, and we need to choose the number of clusters
in each time interval. As a method for selecting a number of clusters, we choose
the Silhouette [11] method, which does not make strong assumptions about the
data-generating process and composes both interpretability and balance between
cohesion and separation. Silhouette score is between 1 and -1, where higher scores
indicate better-defined clusters. In each time interval and for all clustering methods
we choose the number of clusters, restricting the maximum number of clusters to
10. To investigate the FX market dynamics, we compare the clustering results in
each time period with is previous and next clusters. In our method, we compare
clusters with the Adjusted Mutual Information score [12]. Figure 4.3.1 represents
the maximum Silhouette score for the clustering models and the number of estimated

clusters. We can see that the calculated median Silhouette score is slightly higher for
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the K-Medoids model and the ConsistentModel estimate a higher number of clusters
for the same periods.

In Table 6.1 we present clustering results for the K-Medoids model for all time
periods. Despite the fact that at first glance it is difficult to find an obvious inter-
pretation for the resulting clusters, we should note that they reflect a number of
important features that characterize the market. The key findings are listed below

Figure 4.3.1: Silhouette score for different time periods and models. In legend
showed the median values of Silhouette scores.

1 Fixed exchange currencies mostly appear in the same cluster. Well-known
currencies from the Middle East are considered as peng currencies with USD. The
AED and USD are clustered in the same cluster in 69% and USD and BHD are
clustered together in 88% of clustering periods.

2. The resulting clusters reflect the relationships of currencies circulating in the
same geographical region. For example, EUR, CHF, and GBP are appearing in the
same clusterin in 71%, and PKR, INR, and IRR in 81% of clustering periods.

3. Clusters reflect economic associations between countries. For example, Arme-
nia and the Russian Republic are members of the Commonwealth of Independent
States and Eurasian Economic Union, the RUB and AMD currencies have appeared
in the same cluster in 95% of the clustering period.

4. Clusters reflect the industrial connections between currencies (countries). For
example, the examined oil-based currencies RUB and COP are clustered in the same
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cluster in 92% of clustering periods.

To illustrate FX market dynamics, for each model, we compare clustering for
each time period t with the next t + 1 time period clustering results. Figure 4.3.3
presents the comparison results, done by external validity measures Adjusted Mutual
Information for both models.

Figure 4.3.3: AMI for different time periods

The higher values can indicate stable market periods, and lower values indicate
dramatic changes in market structure. The mean values of comparison metrics can
indicate that clusters of FX market generated from the described methodology have
dynamic structure. Although the two models show different behaviors in general,
we can notice that they strongly agree with the sharp changes in the market. Since
the maximum values of AMI for both models over 2002-2023 are smaller than 0.47,
we can say that in each 6-month period, clusters of both models are changed by at
least 0.47, compared with AMI metrics.

From Figure 4.3.3, we can also observe the periods for which the consecutive
clusters are highly dissimilar, which can indicate the high changes in the market
structure. The first major drop in comparison metric can be noticed from 2008-
01-01 to 2009-07-01. This period coincides with the Global Financial Crisis. The
second major dropdown in AMI is observed from 2019-07-01 to 2021-07-01, which
coincides with the global economic crisis caused by the COVID-19 pandemic.

The estimated distance matrices can also act as a useful method to analyze dy-
namic relationships between sets of currencies. As an example, we examine the
dynamic behavior of the RUB currency. In Figure 4.3.4, we present the estimated
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Figure 4.3.4: Estimated distances between RUB and USD, and RUB and COP.

distance in the all-time period between RUB, USD, and COP, where the COP cur-
rency is chosen as a representative of oil-based currencies. First of all, let us note
that the RUB currency, on average, is closer to the COP currency, which has a
natural explanation considering the dependence of the RUB foreign currency on oil
prices. The second notable observation is that since 2022-07-01, the RUB currency
shows an anomalous behavior, significantly departing not only from the USD but
also from the COP currency observed in the same oil-based sector. This effect can
be interpreted as an impact of the Russian-Ukrainian war on the RUB currency.
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Udthnthnud

UwnGUwhpununipjwl Uwywwnwlyu £ nwuncdbwuppbp dnnGuGph Jpw
hhdjwb dwdwlwlwyhu  2wppbph wnyjwiuGph Yiwuwnbnhquighuwh
wuhdwununhynptUu Yuyntt wignphpUutbpp W npwug Yhpwnniopynlulbpp:
bpGlug  gyGpwhuyynn punyphg GuUGNY Jdwdwluwlywihb  2wppbph
Ywuwnbphqughwih wignphpdutpu ntubu wjb Yyhpwnenigynduubn puwquwephy
ninpunubnned:

Qnu  1-p Udhpjws E pbgnd  nwunwuwuhpdnn hhduwuw
dwdwluwlwihu  2wpptph  JnnGutph WL npwlug hGin  wnUgynn
hwuluwgnipynlultnh uwhdwlunwduGphb: Wu girunud Lwle pulwpyynwd Gu
dwdwlwuwyjhu 2wnptph wuwnpwdbunptph quuwhwuwnwywlutph
wuhdwunnunhynptUu uynlu JGpnnutpn:

QinLhu 2-nd puliwpyyncd Gl dwdwuwuwyihu 2wnpbph
Ylwuwnbphqughwh  wnlw  w@nphpdutbpp,  npwlug  Ggpunnipjuwl
quuwhwunwywlltGph wnyw  JGpnnutpp W wn wignphpUutph Jh 2wpp
UhpwnnipjnLultnp:

Qnu  3-p UdhpJwéd E  wwnblbwhinunigjwl  hhduwywl  nGuwluwl
wnryntupubphb: Uwulbwynpuwwtu, pwdhu 3.1 -nwd uwhdwugwéd E ARMA
wpngbulubpny gbUubpwgywéd dwdwlwlwihbu 2wpptph  hwjwpwédniubph
wuhdwununhynptUu  Yuynu  YpuuwnBphquighwyh  hubnhpp: 8Snyg £ wnpybg
hwywnwnpdtih ARMA(p,9) wnngbultph ypw uwhdwudwé d,. JGuinphywyh
wuhdwununnhynptl  Juyntu quwhwwnwyubph  gnjngggndup”  puliwnpybinyg
ARMA(p,q) wpngbuutph Ywngbph hwjunuh uwd wuhwwun hubine nGuwpbpp:
NLuGuwny Yytpp puliwpyywsd guwhwunwyuutpp, gnyg Eunpdwéd Uignphpd 1.-h
wuhdwununhynptlu  Yuyniunigynlup ARMA - wpngbulbpny  gbuGpwgyuwd
dwdwuwyuwyhu 2uwnptiph Yluwuwintphqughwyjh fuunnh Gnync
ynudbhgnipwghwutph  hwdwp:  Unwehlu nbwpnud, Gpp  wnywubph
qgbutpwgdwl hhduwyuwu wypngGulubph Ywpgbpp hwyunup Gu W unyUul Gu, gnyg
E wvpdbp Ugnphpd 1-h nudbn uyniunogniup® Bupwnpbind, np hpwywl
Ywuwnbpubnh phdp hwwnuh E Epypnpn nGuwpnwd, JGup Gupwnnnwd Gup, np
nywiubph gbubpwgdwl hhduwywlu wpngbuutph Ywpgbpp wuhwpn Gu, W
huwjinup Gu Jhwju npwlg yGphu uwhdwulbpp: AduGuwny dm-h EJuwhphy

guwhwwundwl pny] Yuyntunieynidup® JGup wwwgnignud Bup Uignphpd 1-h pny
wuhdwunnunhy Yuyniunepyniup, Gupwnntiny, np hpwywl YjuwunbGpubph phdp
hwjwinuh E: Pwdhl 3.2-hg 3.4-nLd UGUp gnyg Gup tnwihu, ph huswbu puliwpyywé
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JGpennutpp Ywpnn Gu punhwupwgyt] ywunwhwlywlu wypngbuubph wytih UGé

nuwutnh Unw, huswhuhp U GARCH(, q), ARMA(, )-GARCH(®, ¢ ) L ARIMA(p, d, q):
Ynihu 4-nud Ubpyuwywgywd Gu phgnud wnwewnpyynn Jtennubph
pYwihU hwdGdwwnnipyniuuGpp W yhpwnnegyniuutGpp: @(Juwhu JGennubpny
gnyg £t wpyb, np pbgnd wnwewplyynn JGennutpp gbpwquwugnuwd Gu
hwJdGdwunynn ng; wuwpwdbunphy JGpnnuGphu puliwpyyuwsd  dwdwyuwyhu
2wnptph Yiwuwnbnhqwghuwih W wuhdwjunnunhynptu yuyniu
Yiwuwnbphqughuwyh puunhputpnud: W2huwwnwupp bwle UGpwnnod £ utnnwgywd
nbuwlywl wpnynuputph Jh 2wpp Yhpwnnipnduutp, Jdwulbwynpuwwtu
wpunwnpdnyph 2nlyugh  Juunbphqughwh W unnwgywd  YuunbGpubph
nhuwdJdhywjh nwncduwuhpnepinidu: Unnwgywé JuuwnbGpubpp pungdnud Gu
wpunwnpdnypeh 2nLyuwih Jvh pwlh hhduwyuwu hwwnynogynduuGn.
1. Shpujwd thnruwpdbpny wpdnyplUbpp unynpwpwn hwjunuynwd G Unyl
Yiwuwnbpnd:
2. YuwuwnbGpubGpp wpuwgnned G Unglu  w2huwphwgpwywl  twnpwspnud
annénn wpdnypUutph thnfuhwnpuwpebpnopynibuGpp:
3. Ywuwnbtpubtpp gnug Gu triwhu Gpyputph Jhele inbinGuwlyuwt Yuwwbnp:
4. Ywuwnbpubpp gnyg GU wvwihu wnpdnyputph Jhele wpryniuwpbpwyuwiu
Ywwtipp:

Unnwigywd Juuwnbnputnh hhdwl Jpw wnwewnyytl E wpwnwpdnyph
2nLtyuh Yuyniuncepywl yepinwdnipjuwl Ubpnn, nnp hhdudwé £ hpwp hwgnpnnn
dwdwlwluwzppwllGph hwdwpn unnwgywéd Yuunbpubph hwdGdwunnepywl
Ynw:

Pesiome

B jmaHHOM auccepranuu Mbl HccsiefyeM npoGreMy acHMIITOTHUYECKHU COIVIaCOBaHHOM
KJ1acTeprsaliy HaGopoB JIAHHBIX BpeMeHHBIX PsJIOB, CreHePUPOBAaHHBIX Ha 0CHOBE Mojiesiel.

I'naBa 1 nocpsireHa onpeaeseHUsIM 0CHOBHBIX Mo/ler/lel BpeMeHHBIX PsJIOB M CBsI3aHHBIX
C HUMHU TIOHATHH, U3yUaeMbIX B auccepranyu. B aToii miaBe Takke 06CyXat0TCs aCUMIITOTHUECKN
ycToluMBbBIe MeTo/Ibl OLIeHKH T1apaMeTPOB BpeMeHHBIX PsAJIOB.

B rnaBe 2 paccmartpuBaroTCsl CyIecTBYIOI[He arOPHTMBI KAcTePH3al{id BpeMeHHBIX
PSJ0B, MeTO/[bI OI|eHKH TOUHOCTH KJIacTepU3alliM, U TIPU/IOKeH s 3THX alTOPUTMOB.
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B miaBe 3 Mbi ucciieyeM Mepbl HeCXO[CTBA, OMpefiesieHHbIe HAa MPOCTPAHCTBAX 06paTHMbBIX
ARMA nporneccoB. Mbl paccMaTpuBaeM SMITHPUUECKHE OIEHKH 0BCYXKJaeMbIX METPUK W
JMeEMOHCTPUPYEM UX ACUMITTOTUUECKYIO COCTOATENLHOCTh. MCIob3ys 3T OlleHKH, MBI UcCelyeMm
Anroputm 1 W TIOKasbIBaeM ero acHMITTOTUUECKYIO COIVIACOBAHHOCTH /IS ABYX KOHGUTypaiui
3afaun. B TmepBOM cIleHapuu, Koryla TOPSAKH OCHOBHBIX TmpoljeccoB ARMA ofWHaKoBRI U
W3BeCTHLI, MBI MTOKA3bIBAEM CTPOTYIO0 COTVIACOBAaHHOCTh AsropuTMma 1, Mpejrosiaras, uto IiejieBoe
KOJIMUeCTBO KJIaCTePOB M3BecTHO. Bo BTOpPOII TIOCTaHOBKe 3a1aud MBI ITPeITIo/iaraeM, UTo 0 CHOBHEIE
MPOIIECChI HEM3BECTHLI U M3BECTHBI TOJIBKO BEpPXHUE Tpeesibl MopsaakoB mMofened. mes ciabyio
COCTOSATE/TBHOCTL IMITUPUUECKON OIEHKH /IS HEM3BEeCTHBIX MOJIesiel, Mbl J0KasbiBaeM cJiabo
aCUMITTOTUYECKH COTTIaCOBaHHOCTL AsiroputMa 1 Jyis Bropoii KoH(UTypaIiuy 3a/1aud, Tipe/rosnarasd,
UTO 33JaHHOe YHC/I0 KIacTepoB u3BecTHO. Mbl MOKasbiBaeM, Kak 06GCy)/jaeMbie MeTO[bl MOKHO

pacIipocTpaHuTh Ha Apyrue, Gosiee KPYIHbIE K/acChl CJIyualiHBIX rpoijeccoB, Takie kak GARCH(

ro
?,q), ARMA(p, q)-GARCH(p, q) u ARIMA(p, d, q). MbI Tak)ke aHa/JU3UpPyeM TEOPETHUECKHe U
MpaKkTHUYeCKWe BOIIPOCHI 00CY)XKAaeMOH CTPYKTYpbl W JldeM IIPAKTHUECKWe W TeopeTHUecKue
TIpeJIOKEHHS.

Uro6kl OLleHUTh TIpejjiaraeMue MeTO/bl K/IacTepu3aliid, MbI TIPOBEIH HECKOJIbKO
9KCTIEPUMEHTOB, UTOOBI TOKa3aTh KaK TOUHOCTh K/acTepusalldd, TaK M aCHMIITOTHUECKYIO
COIVIACOBAHHOCTh  00CY’K/laeMbIX MeTOJIOB. JTH U JIpyIHe BOIPOCHI KacaeMble MPaKTHUECKHX
nipobsieM mipejyiaraeMbix MeTo/ioB o6cykaatoTcs B miase 4. IIpeyioxkeHHbIe METO/IbI IIPEBOCXOJIAT
HelapameTpuyecKrie MeTO/{bl BO BCeX PACCMOTPEHHBIX 3KCIepUMeHTax. B KaueCTBe NpHIOKeHUs
MBI TIPUMEHWIH IIpe/ylaraeMie MeTOALI KJacTepU3aluid K peajbHOMY Habopy JaHHBIX JIs
K/lacTepy3allid W aHa/nM3a CTPYKTYPbI BA/IOTHOTO phIHKA. [TosryueHHbIe KacTephl MOAUepPKUBAIOT
HECKOJIbKO K/THOUEBBIX aTpUOyTOB Ba/IFOTHOTO PhIHKA:

1. BamoThl ¢ (PUKCHPOBAHHBIM 0OMeHHBIM KYPCOM 0OLIUHO MOAB/IAIOTCA B OJIHOM KJlacTepe.

2. Knacrepbl OTpa)kaloT B3aUMOOTHOLIEHHS BaslOT, JEHCTBYIOIUX B OJHOM Treorpaduueckom
peruoHe.

3. Knactepbl 0603HauaoT 3KOHOMUUECKUE CB31 MEX/Y CTPaHaMM.

4. KyiacTephbl NOKa3bIBAIOT IPOMBIIIIEHHBIE CBASH MEK/Y BaIOTaMH.

AHanu3 yCTOHUMBOCTH KOH(UIYpalliy BaIOTHOTO DPHIHKA OCYILECTBIIAETCS IyTeM
CpaBHEeHMs K/IacTePOB JUIi  KOKAOTO MOUISAYIOIEr0 BPEMEHHOIO IpPOMeXXyTKa. Mel
MPOJIEMOHCTPUPOBA/IM, UTO JAWHAMHUECKWH 0030p Ba/IOTHOTO DBIHKA TAKXe MOXKeT CJYXXUTh

MoJyIe3HbIM MHCTPYMEHTOM I dHa/IM3d B/IWAHWUA 3HAUUTE/IbHBIX 3KOHOMUUECKUX cobpITHIA Ha

CTPYKTYPY pBIHKA.
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