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INTRODUCTION

In recent years, numerous researches that examine the mechanisms of tumor development have
led to the beginning of a new era of medicine (W. Liu et al., 2020, Martinez-Reyes & Chandel,
2021; Parker et al., 2020). Although these studies develop new treatment approaches (Chaturvedi
et al., 2019; Cross & Burmester, 2006; Kamrani et al., 2023) and increase overall survival
(DeSantis et al., 2011, 2014; Duffy, 2013) for many cancer types, there is a crucial need for
comprehensive analysis to successfully predict, prevent, estimate survival rates, and treat patients.
In parallel with the accumulation of new knowledge, there is growing recognition that cancer is
difficult to study and treat due to its complexity and heterogeneity (Demicco et al., 2024).

The cancer research community predominantly identifies molecular diversity among various
cancer types (inter-tumor heterogeneity) to enhance treatment accessibility to a broader population.
Nevertheless, intra-tumor heterogeneity's significance is pivotal in personalized medicine and the
scientific field as it contributes to examining novel characteristics in diverse subtypes.

Multiple alterations at transcriptomic, genetic, and epigenetic levels in many cancer types have
been detected and described. Low-grade gliomas (Ozair et al., 2023) and breast cancers (Andrade
De Oliveira et al., 2023; Sarhangi et al., 2022) are no exceptions as they showed differed
expression, altered mutational burden, and methylation shifts in various processes and molecular
functions. The studies emphasize the heterogeneity of low-grade gliomas (LGG) and breast cancers
by examination of different subpopulations of cells within a tumor with differences in
tumorigenicity, metastatic potentials, and therapy sensitivities (Haynes et al., 2017, Heppner &
Miller, 1983; S. Wu et al., 2023). The high intra-tumor heterogeneity of these cancers suggests that
potentially effective treatments could be missed if a specific molecular variation goes undetected.
Moreover, the treatment strategy of patients correlates with molecular features that are affected at
different levels. Therefore, there is a high necessity for the investigation of tools capable of
considering peculiarities and conducting a comprehensive analysis of the molecular diversity of
cancers. The application of such tools has already been widely practiced in scientific and clinical
fields. While bioinformatic tools are mainly designed for observing peculiarities only at specific
levels (Stancl & Karli¢, 2023), machine learning-based approaches mostly solve the issues with
the classification of samples or predict the type of cancer for patients with unknown diagnoses
(Adams et al., 2023; Balkenende et al., 2022; Booth et al., 2020, Kadir & Gleeson, 2018; Kroner
etal., 2021; Sultan et al., 2020).

Objectives and research tasks

The objective of this study is to develop and apply integrative multi-omic data analysis and
knowledge transfer approaches to analyzing the molecular diversity of breast cancers and low-
grade gliomas.

Research objectives are:

1. Develop a pipeline for integrative multi-omic analysis based on self-organizing maps
approach;

2. Develop a transfer learning method for the projection and characterization of new
samples on an existing self-organizing space;

3. Perform an integrated multi-omic characterization of breast cancer subtypes, evaluate
the associations among functional, regulatory, and structural omic features, and examine their
relationships with clinical indicators and prognosis.

4. Perform a multi-omic characterization to explore the molecular diversity of low-grade
gliomas and evaluate the relationship between omic profiles and the disease's World Health
Organization (WHO) genetic subtypes.



The scientific and practical significance of the results:

Breast cancer and low-grade glioma, examined in our thesis, demonstrate distinct molecular
mechanisms that impact tumor prognosis and development. Identifying the underlying factors for
the alteration in tumor samples serves as a basis for targeted and personalized treatments
customized for particular subtypes and individual samples. Although an array of studies and
models have been developed and validated for analyzing various tumors, they are often limited to
general examination because of the heterogeneity and complexity of cancer. As mentioned above,
a multi-omics-based machine learning approach in our analysis allows for addressing these
problems. Namely, this method is designed to reveal the molecular diversity of cancers connecting
the altered factors seen in samples and the pathological traits observed in clinical analysis. The
integrative pipeline developed in the thesis facilitates the identification of disturbed gene modules
across diverse omic landscapes. The model demonstrated significant results for both types of
cancer, which provides evidence for the validity of the proposed method.

Our results showed alterations on the transcriptome layer for processes associated with
proliferation, epithelial-mesenchymal transition (EMT), immune response, DNA repair, and
stromal/stem cell signature for breast cancer PAMS0 subtypes. The luminal A subtype showed
significant differences in comparison with other subtypes, which can be related to the more
aggressive nature and worse prognosis of luminal A cancers. The results also highlight subtype-
specific associations of the same transcriptomic alterations and methylation or CNVs or SNVs. For
the basal subtype, we observed the highest values for the expression of EMT genes and
hypomethylation of the mentioned signature. Additionally, EMT genes were overexpressed in
luminal A and luminal B cancers and showed a positive correlation with CNV counts. For low-
grade gliomas (LGG), we demonstrated that the classification of LGG samples according to the
expression and methylation values is more informative from the prognostic point compared to the
genetic subtypes.

Finally, our results emphasize the complex subtype-characteristic associations between gene
expression and epigenetic/genomic factors and their implications for survival and clinical
outcomes.

Approbation. Proceedings of the thesis have been presented at “L.omonosov 2021 May 2021,
Moscow; “Lomonosov 20227, April 2021, Moscow;, “16th RAU annual conference™ April 2021,
Yerevan, “17th RAU annual conference” March 2022, Yerevan, “International Congress on
Informatics: Information Systems and Technologies” November 2022, Belarus, “Society of
Immunotherapy of Cancer 38th Annual Conference, March 2023, San Diego; “Society of
Immunotherapy of Cancer 39th Annual Conference™, April 2024; Houston.

Publications. The main results of the dissertation are published in 3 papers and 2 presentation
abstracts at international scientific conferences.

Structure. This dissertation comprises 100 pages of computer-formatted English text,
including 2 tables and 29 figures, consisting of the following sections: Introduction, Literature
Review, Materials and Methods, Results and Discussion, Conclusion, Inferences, References
(including 266 sources), and Appendix (pp. 101-147).

LITERATURE REVIEW
The literature review examines the variety of molecular mechanisms of breast cancer and
gliomas and emphasizes the heterogeneity of diseases. The availability of sources of multi-omic
data is discussed, various machine learning algorithms are mentioned, their advantages and
disadvantages are emphasized, as well as their applicability in research of multi-omic biological
data.



MATERIALS AND METHODS

Breast cancer data. In this study, we used available omic datasets of the TCGA-BRCA
(Breast Invasive Carcinoma) project (The Cancer Genome Atlas Research Network et al., 2013).
RNA-seq counts, microarray promoter and gene body methylation, CNV, and SNV were obtained
for 996 samples. The patient's clinical data was retrieved from the GDC database and contains
variables such as tumor pathologic stage, information about treatment, survival, etc. We used gdc-
client (Grossman et al., 2016) to download the required files from the portal. PAMS50 molecular
classification data for these samples were obtained from the publication by Chia et al. (Chia et al.,
2012).

STAR-aligned and TPM-transformed expression values for each sample were obtained.
Expression values were then subjected to library size normalization and converted to
log2(counts+1) using a variance stabilizing transformation.

The GDC-supplied methylation data contains betta values (Methylation intensity/(Methylation
intensity+Unmethylation intensity)) measured with Illumina Infinium DNA Human Methylation
27 and HumanMethylation 450 microarrays. DNA methylation data was aggregated by merging
the data generated with two microarrays. To obtain per gene promoter level methylation data, the
betta values of CpG islands that overlap with the corresponding promoter were averaged. Next
average promoter beta value for each gene was converted to methylation M values as follows: M
=log2(Beta/1-Beta) (Du et al., 2010).

CNV available for the project was generated with the Affymetrix SNP 6.0 genotyping
plattorm. We used ASCAT (Van Loo et al., 2010) to produce gene-level copy numbers. These
values were further log2 transformed. Prior to normalization, we added small random numbers
(mean=0, SD=0.001) to the CNV data to row-wise constant values.

SNV data was obtained from the GDC portal in the form of Mutation Annotation Format
(MAF) files. MAF contains aggregated mutation information from VCF files and is produced from
Somatic Aggregation Workflow. In MAF files multiple SNVs for the same gene, therefore, we
summarized SNV counts per gene. Lastly, and similarly to CNV data, we added small random
numbers row-wise SNV counts before normalization to avoid constant values in the final data.

Low-Grade Glioma data. The glioma dataset consisted of 122 World Health Organization
(WHO) grade II and 1T adult-type glioma (low-grade glioma, LGG) samples collected in the
framework of the German Glioma Network (GGN) (Weller et al., 2009). In addition, we collected
IDH-A gliomas with single Chr19q deletions without Chrlp co-deletions into a separate class IDH-
A (astrocytoma).

The gene expression of GGN glioma cohort samples was measured using Affymetrix Human
Genome U133 Plus 2.0 microarrays. Methylation was measured using Illumina
HumanMethylation450 BeadChip arrays and presented as M values. CNV levels were obtained
using array-CGH microarrays. Gene expression and methylation data are available in the Gene
Expression Omnibus (GEO) database under accession numbers GSE61374 (LGG expression
(Weller et al., 2015)) and GSE129477 (LGG methylation (Binder et al., 2019)).



Integrated analysis of cancer molecular features with multi-layer SOM. To conduct an
integrative analysis of omic datasets of breast cancer, we developed a multilayer self-organizing
maps (ml-SOM) approach as an extension of the oposSOM package described in detail in the
previous section and elsewhere (Binder et al., 2022; Loeffler-Wirth et al., 2022). For ml-SOM, we
organized all omic datasets into distinct layers and trained them collectively on a single SOM grid,
similar to a classical single-layer SOM (s1-SOM) of the oposSOM package (Loffler-Wirth et al.,
2015). The key distinction between the training of sI-SOM and ml-SOM lies in how the best
matching unit (BMU) is selected within the SOM grid.

In sl-SOM, the BMU is chosen based on the distance between the input vectors and the weight
vectors of SOM nodes (Wirth et al., 2012). However, in the case of ml-SOM, these distances are
calculated separately for each layer and then combined into a single value, taking into account the

respective layer weights as follows:
n
D = Z w; * di
i

where n - number of layers, 1 - weight of ithlayer, di - distance to the SOM node on ith layer.

The weight factor w scales the effect of each of the layers on the topology of the ml-SOM. It
takes values from 0 to 1 and ensures that }7-; w; = 1. Because SOM training applies to the
combined multimodal vectors the topology of the resulting map is governed by the weighting
factors, which, in turn, define the degree of couplings between the different omics layers. For the
breast cancer dataset, we applied wGex = 1, wGmx =0, WCNV=0, and wSNV=0 weights to force
arrangements of genes on the SOM grid by expression data. For the glioma dataset, we used equal
weights wGex = wGmx = wCNV=1/3 to ensure the balanced coupling between expression,
methylation, and CNV layers.

The downstream analysis of ml-SOM is similar to the oposSOM pipeline (Loftler-Wirth et al.,
2015). Due to the self-organizing properties of the SOM, neighboring nodes tend to have similar
weight vector profiles, which can be visualized as a SOM portrait by applying a color gradient (for
example, from blue to red). As a consequence, the obtained mosaic images show a smooth texture
with red and blue spot-like regions referring to clusters of increased or decreased omics scores in
the respective sample or sample group. Following the Self-Organizing Map (SOM) training, we
partitioned the resulting metagene map into discrete regions referred to as “spots.” These spots
represent clusters of genes that exhibit similar co-(de)regulation patterns, particularly genes that
are perturbed in at least one of the studied omic layers. Spot dissection (selection of genes) within
SOM portraits can be performed using various criteria, such as overexpression (for glioma), k-
means,” and ‘variance’ (breast cancer) (Wirth et al., 2012).

For biological function mining in these spots, we performed functional annotation using
overrepresentation and Gene Set Z-score analyses. Additionally, we also employed the Enrichr
resource (Kuleshov et al., 2016) for over-representation analysis using additional gene sets.

Tumor Similarity Analysis, Supporting and Prognostic Maps. Similarity analysis
compares the SOM portraits of the tumor samples by means of Pearson’s correlation coefficient of
their omic layer values using meta-genes instead of single genes, which improves the
representativeness and resolution of the results (Hopp et al., 2013). The correlation matrix was
visualized using pairwise correlation maps and correlation net representations. The correlation net
constructs an unweighted graph by connecting the nodes (samples) whose pairwise correlation
coefticient exceeds a given threshold (r > 0.5).
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Association analysis of the association between molecular features in tumors. To assess
the relationships between gene expression, methylation, CNV, and SNV across various spots (gene
modules), we utilized linear regression with gene expression as the outcome and the other genomic
markers as explanatory variables. The model was further enhanced by incorporating cancer
subtypes as an interaction term, allowing us to examine the variability in these relationships across
different disease subtypes and omic layers.

We used the ‘emmeans’ (Searle et al., 1980) and ‘interactions’ (Bauer & Curran, 2005)
packages in R were employed for statistical analysis and visualization of these interactions.
Additionally, we applied the Dunnett's Test to evaluate pairwise differences in mean levels of
expression and methylation, CNV, and SNV gene modules in subgroups compared to true normal
tissue. Another approach for analyzing omic layer associations was to calculate the signed square
root covariance (ScoV) between omic metagene profiles in a pairwise fashion (Binder et al., 2022).
For the sample groups, we calculated mean portraits by averaging the respective metagene values
for the overall individual sample portraits of the respective group.

Creating “phenotype” maps of association with clinical characteristics and survival.
Phenotype data accompanying the breast cancer dataset, such as medication, disease stage, and
grade for TCGA-BRCA samples was obtained from the GDC portal. Phenotype data of the glioma
dataset was obtained from the German Glioma Network.

To create a phenotype map, we constructed a linear regression model of metagene value as a
dependent variable and clinical parameters as an ordinal independent variable. Then, we mapped
the corresponding regression coetficient for the predictor variable to a corresponding position of a
metagene on the SOM grid. The visualization of weight coefficients allows evaluation of the
association of corresponding clinical characteristics and the levels of functional gene modules on
different omic layers.

Survival analysis was performed using the Cox proportional hazards regression using
‘contsurvplot’, ‘survival,” and ‘survminer’ R packages. The model includes survival as a dependent
variable and spot omic profiles and group information as predictors.

Projection of New Samples Into Existing SOM space. Supervised SOM (supSOM) portrayal
is based on support vector machine regression (SVMR) and provides an alternative approach for
extending an existing SOM space. In supSOM, one SVMR model is trained for each meta-gene
individually, using the genes’ expression profiles of the primary data as an independent variable
and the corresponding meta-gene profile obtained from the initial SOM training as the dependent
variable. Thereby, only genes associated with the particular meta-gene or one of the adjacent meta-
genes are considered predictors. Once a model is trained, gene profiles in new samples can be used
to predict the corresponding meta-genes. We applied the SVM regression model with the Gaussian
kernel and evaluated supSOM performance for varying neighborhood radii.

Performance and accuracy for supSOM were assessed based on the evaluation of correlation
and root-mean-square deviation (RMSD) between metadata of the extension samples (i.e., the
portraits) generated by SOM as reference vs. supSOM.

For benchmarking runtime of the SOM initialization and training phases, we generated
artificial expression matrices for the primary and secondary (extension) data (m1 = m2 = 50, 100,
200, 500, and 1000 arrays per class) using the ‘madsim’ R package (Dembélé, 2013). As a “real
life” data use case, we studied disease grade-associated transcriptome changes in breast cancer
datasets (GEO accessions: GSE42568, GSE10810, and GSE29431).



RESULTS AND DISCUSSION

Extending the functionality of the SOM pipeline. We developed a new SOM cartography
method to perform integrative analysis and visualization of molecular landscapes. Our method
dissects the different omics landscapes into modules of co-methylated, co-expressed, and co-
aberrant genes focused around a particular biological process or function. They reflect the
underlying network of regulatory modes of cell activity within each of the omics layers and
between them. With our ml-SOM pipeline, it is possible to combine as much omic data as available
as long as they can be represented in a gene-centric way. In the breast cancer dataset, we were
interested in expression-driven clustering of gene modules in PAMS50 subtypes, so we used heavily
expression-imbalanced weights. Contrarily, equal weights for expression, methylation, and CNV
layers were applied in the analysis of the glioma dataset to identify molecular subtypes and
associate them with known genetic classes (IDH-mut, IDH-wt).

The ml-SOM approach offers another important addon to the integrative analysis of multi-
modal omic data. It is known that the transcriptome and proteome are dynamic and reflect the
functional state of a cell (Unwin & Whetton, 2006). They can provide significant insights into the
molecular mechanisms of cancer development and progression. On the other side, epigenetics and
genomic aberrations significantly impact the dynamic state of the cell (Ducasse & Brown, 2006;
Sadikovic et al., 2008). The ml-SOM also opens an opportunity to evaluate the association between
dynamic (transcriptome or proteome) and regulatory (methylation, CNVs, and SNVs) omic layers
using regression of covariance.

Finally, multi-omics cartography in terms of phenotype maps provides a tool to extract gene
signatures associated with clinical indicators and survival across different omics layers.

In conclusion, ml-SOM cartography allows for disentangling the diversity of regulatory modes
of cell functions in terms of easy-to-interpret gene-centric data landscapes. Due to the growing use
of multi-omics data, we expect these options will become important for future progress in cancer
bioinformatics.

Integration of new samples into SOM space. The major disadvantage of the SOM method is
its inability to integrate new samples into an existing SOM space without retraining the entire
model. This can be time- and computing resource-consuming; moreover, due to the initialization
phase of the SOM, the arrangements of the genes on a grid can be different and incomparable. The
same applies to the ml-SOM pipeline. To overcome these drawbacks, we developed a supervised
approach (supSOM) that adds a support vector machine regression model on top of the original
SOM algorithm and “predicts” the SOM portrait of a new sample. The general workflow of
supSOM is presented in Figure 1.

The “primary” dataset is trained with self-organizing maps (SOM), followed by clustering and
downstream analysis. Then, the support vector machine regression model (SVMR) is trained to
map the input dataset to SOM “portraits™ generated from “primary” data. Finally, a “secondary”
dataset is supplied to the model for projection into the SOM space. In supSOM, one SVMR model
is trained for each meta-gene individually, using the genes’ expression profiles of the primary data
as an independent variable, and the corresponding meta-gene profile obtained from the initial SOM
training as a dependent variable. Only genes associated with the particular meta-gene or one of the
adjacent meta-genes of defined radius are considered predictors.

Once a model is trained, gene profiles in new samples can be used to predict the corresponding
meta-genes. The accuracy of prediction based on the simulated dataset was 0.9-0.99 depending on
the radius. We successfully tested supSOM for analysis and prediction of breast cancer histologic
grades. The SOM was trained with a “primary dataset” (GSE42568) that contains gene expression
profiles measured in 121 samples stratified by breast cancer histologic grade (17 normal, 11 Grade
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I, 40 Grade II, 53 Grade Ill). The supSOM analysis of “secondary” datasets GSE29431 and
GSE10810 showed a good correlation with primary SOM counterparts (Figures 2A and 2B).

In conclusion, the supSOM s a transfer learning approach that projects novel data into a
multidimensional space obtained from previously collected data. It considerably widens the
application range of SOM portrayal by reducing model limitations and computation demand and
usage of previously generated knowledge for the characterization of new samples.

Figure 1. General workflow of the supSOM algorithm. In supSOM, the SVMR model is
trained to map the primary dataset to its SOM “portraits.” During supSOM testing, the “secondary”
dataset is supplied to the model for projection into the SOM space. Single arrows indicate the order
in the pipeline, while double arrows the dimensions of samples/features in the matrix.

Integrated analysis of omic landscapes in breast cancer subtypes. The TCGA-BRCA
multi-omics data that contains information about 996 samples were classified by PAMS50
molecular classification and were analyzed by multi-SOM algorithms (Figure 3). The expression,
promoter methylation, CNV (copy number variations), and SNV (single nucleotide variants) data
were analyzed with the mI-SOM algorithm, which was trained on a 40x40 node grid for dimension
reduction.
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Figure 2. Comparison of supSOM portrayal of breast cancer transcriptome landscapes. (A)
Portrayal of GSE42568 (primary) and GSE10810 secondary/extension). (B) Portrayal of
GSE42568 (primary) and GSE29431 (extension).

During the training phase, mI-SOM combines the genes having similar profiles of expression,
methylation, CNV, and SNV across samples into adjacent nodes according to the weight factors
on the SOM grid thus forming gene clusters (also referred to as spots or gene modules). We
combined samples in groups for downstream analysis according to the PAM50 classification to
assign cancer samples to molecular subtypes. The average multi-omic SOM portraits showed
considerable variations in expression (Gex), methylation (Gmx), CNV, and SNV both across
PAMS50 subgroups as well as compared to true normal tissue. The mI-SOM generated variance
landscapes were further segmented into gene modules (or spots) with ‘k-means’ criteria and highly
variant spots (spots A, C, E, F, L, R, Q, S) were selected for downstream analyses. The average
number of genes per spot was 155+60 (M+SD). Spot F had the lowest gene counts (9 genes), while
spot R had the highest (207 genes). Next, we performed a downstream functional analysis with
Gene Set Enrichment Analysis (Loffler-Wirth et al., 2015) and an over-representation analysis
with genesets covering multiple domains (Kuleshov et al., 2016).

Spot A contained 114 genes, associated primarily with DNA replication (padj = 3.3e-05), E2F
targets (padj = 5.3e-09), retinoblastoma pathway (padj = 3.23e-05), and cell cycle activity (padj
= 5.4-e04). Notably, spot genes were also associated with EMT markers taken from Sarrio et al
(Sarrio et al., 2008), as well as markers for the basal BC subtype taken from Smid et al (Smid et
al., 2008).

Spot C contained 165 genes mostly involved in protein transport (padj = 2.0e-02), SMARCA?2
antiproliferative targets (padj =2.2e-06) (Shen et al., 2008), and DNA repair. (padj = 4.34E-03).
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Spot E contained 118 genes enriched with luminal cancer gene signatures (padj = 0.005)
(Charafe-Jauffret et al., 2006) and genes associated with the amplification of chromosome 16p13
(padj = 0.02) (Nikolsky et al., 2008).

Spot F contained only nine genes; however, they were implicated in vitamin D signaling (padj
= 0.038), palmitoyl-CoA Hydrolase Activity (padj = 0.025), Androgen Receptor/NKX3-1
Signaling (padj = 0.01) and ICGC transcription factor target genes (padj < 0.01).

Spot L contained 67 genes strongly associated with the immune system process (padj = 1.2e-
12).

Spot Q contained 141 genes enriched with stromal (padj = 7.84E-03)(Finak et al., 2008) and
stem cell gene signatures (padj = 8.81E-14) (Lim et al., 2010), genes involved in accelerated
proliferation (padj = 6.1e-05), inflammation (padj = 0.03), RAS signaling (padj = 1.1e-05),
hypermethylation of tumor suppressor genes (padj = 3.2e-04).

Spot R contained 207 genes associated with RNA splicing (padj = 0.005) and mitochondrial
gene signatures (padj = 0.004).

Spot S contained 106 genes enriched with luminal cancer signatures (padj = 4.3e-06), ESR1
signatures (padj = 3.5e-15), and metastasis-suppressing signatures (padj = 2.1e-03). We labeled
the selected spots based on the functional annotations that best describe the genes associated with
each spot (Table 1).

Table 1. Spot function assignment along with the top 3 correlated genes.

Spot | Top correlated genes on transcriptome SOM | Spot Assignment
layer (Pearson correlation coefficient, r)

A RADS51A4PI (r=0.81), KIF2C (r=0.76), cell cycle, metastasis, EMT
DSCCI (r=10.76)

C HLTF (r=10.83), GIT2 (r = 0.80), miRNA targets/DNA repair
ACAP2 (r=0.80)

E ROGDI (r=0.77), RAB26 (r = 0.75), luminal cancer
HAGH (r=0.75)

F TATDN3 (r=0.64), THEM4 (r=0.62), VDR signaling
DCAFS (r=0.58)

L FERMT3 (r=0.93), PARVG (r=0.86), immune response
FMNLI (r=0.88)

Q CAVI (r=0.81), TGFBR2 (r=0.77), stroma/stem cells
RBMSI (r=0.75)

R | SSNA4I (r=0.85), DRAPI (r=0.82), RNA splicing
SURF2 (r=0.82)

S | SCUBE2 (r=0.82), ESRI (r = 0.82), ESR1 signaling
ABCCS (r=0.76)
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Figure 3. Schematic summary of the multi-omic analysis of breast cancer PAMS50 subtypes.

Multi-omic summary of deregulated modules in breast cancer subtypes, survival, and
clinical phenotypes. We aimed to summarize findings from multi-omic analyses based on breast
cancer subtypes, focusing on gene modules, survival, and phenotypic characteristics. For this
purpose, we constructed Cox regression models for the interaction of continuous expression,
methylation, CNV, and SNV levels for each gene module and each cancer subgroup. We also
generated phenotype maps visualizing the association between clinical phenotype parameters with
different omic layers as described in our previous publication (Arakelyan et al., 2021).

We found that gene signatures associated with EMT/cell cycle, luminal, immune system, and
RNA splicing were upregulated across all cancer subtypes compared to normal tissue. Conversely,
stromal/stem cell signatures were downregulated across all cancer subtypes. The expression levels
of RNA splicing genes remained consistent across all cancer subtypes. Immune signature genes
were notably higher in HER2E, basal, and normal-like cancers than in luminal A and B subtypes.
For other gene modules, the extent of expression was varied along with cancer subtypes.
Specifically, the expression ofthe EMT/cell cycle module progressively increased from luminal A
through normal-like, luminal B, HER2E, to basal cancers, with the highest expression noted in
basal cancers. Similarly, for luminal gene signature, the expression gradually increased from basal
through normal-like, HER2E, luminal A to luminal B cancers. Finally, gradual downregulation of
stromal/stem cell signature was observed from normal-like through basal, luminal A, HER2E to
luminal B subtypes. Interestingly, these changes were paralleled with the increase in methylation
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levels. In addition, we observed consistently increased methylation levels of VDR genes across all
cancer types, except the normal-like category. However, this was not associated with any
noticeable changes in their expression levels. In addition to these changes shared by all cancer
subtypes, there were more subtype-characteristic perturbations.

Thus, luminal A cancers were additionally characterized by downregulation of expression and
methylation of DNA repair genes, and overexpression of ESR1 signature genes as the most
dominant feature for this cancer subtype. Finally, this subtype showed decreased counts of SNVs
in the immune system, stromal/stem cells, and RNA splicing genes. Interestingly, EMT/cell cycle
gene expression in this subgroup was upregulated despite increased methylation levels;, however,
their expression levels were positively correlated with CNVs. The survival in luminal A cancers
was associated with several gene modules on different omic layers, with the highest impact of the
low expression levels of EMT and DNA repair genes on favorable survival prognosis. The luminal
A cancers showed multiple significant associations with clinical phenotypes (Figure 14).
Particularly, the overexpression of DNA repair genes was associated with poor prognosis.
Moreover, increased SNV profiles and decreased methylation of these genes in this cancer type
were associated with advanced stages of American Joint Committee on Cancer’s (AJCC) tumor
pathologic assessment; particularly with pathologic M (metastasis) and pathologic N (lymph
nodes). Furthermore, the increased expression of luminal cancer gene signature was associated
with the presence of prior malignancies.

The luminal B subtype exhibited expression changes similar to luminal A cancers, except for
unchanged expression DNA repair genes and a downregulated ESR1 signaling gene signature (spot
S). This specific downregulation in luminal B was not linked to significant changes in methylation
or CNV when compared to luminal A cancers. However, it showed a negative correlation with the
SNV profile, not observed in luminal A cancers. Moreover, the methylation profiles in these two
luminal subtypes closely resemble, except for increased methylation of immune system genes in
the luminal B cancers. We did not observe any significant association with survival in this cancer
subtype, except for methylation of immune system genes with borderline significance (p=0.0678)
(Figure 23). Phenotype portraits for this cancer subtype showed a positive association of advanced
AJCC pathologic staging, and, in particular AJCC pathologic M with expression and methylation
of RNA splicing genes as well as decreased expression and methylation of DNA repair genes.
AJCC pathologic T (primary tumor) was positively associated with the increased CNV profiles of
the EMT/cell cycle and immune response genes.

The transcriptome profiles for the HER2E subtype were closely aligned with those of luminal
B, differing only in the magnitude of changes. Unlike in the luminal B subtype, methylation levels
of EMT/cell cycle genes in the HER2E subtype remained unchanged compared to the true normal
samples. Furthermore, this subtype exhibited increased CNV profiles for luminal and stromal/stem
cell gene signatures. Notably, the survival impact for this cancer subtype was most influenced by
the underexpression of the VDR gene signature and the overexpression of immune system genes
(Figure 4).

In agreement with the survival data, the negative association of vital status with the
overexpression of immune system genes was observed. Moreover, the overexpression of the
luminal cancer signature was positively correlated with advanced tumor staging (Figure 5).

Unlike Lum A, Lum B, and HER2E cancers, in basal cancers, a strong negative correlation
existed between the overexpression of EMT/cell cycle gene signatures and decreased methylation
levels. A similar relationship between underexpression and methylation levels was noted for DNA
repair genes. This cancer subtype's survival was linked to various gene modules across omic layers,
with hypomethylation of the ESR1 gene signature having the most significant positive impact on
prognosis (Figure 4).
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Figure 4. Association of omic features of SOM gene modules with survival in PAM50
subtypes. Survival analysis was performed using the Cox proportional hazards regression with the
inclusion of spot levels as continuous variables using “contsurvplot,” “survival,” and “survminer”
packages. Survival curves were visualized with range values with 5 intervals (Q1: minimum, Q2:
25th percentile, Q3: 50th percentile, Q4: 75th percentile, Q5: maximum). Only plots with survival-
spot association with p-value < 0.1 are displayed.

Furthermore, the prior malignancy was positively associated with increased methylation of
DNA repair genes and decreased methylation of RNA splicing genes (Figure 5). Finally, the
normal-like cancers were characterized with additional underexpression of VDR signaling
signature and a decrease of CNV profiles in almost all gene modules (DNA repair, luminal cancer,
VDR, immune response, stromal/stem cells, RNA splicing) compared to other cancer subtypes. No
specific gene modules were significantly associated with survival for this cancer subtype, however,
we observed a significant association of CVN increase in VDR signaling, EMT/cell cycle, and
immune system genes with prior malignancy in this cancer subtype (Figure 5).
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Figure 5. The phenotype portraits of the association of omic features of SOM gene modules
(spots) with clinical parameters in PAM50 subtypes. Phenotype portraits show the -log10(p)
regression model of SOM metagene levels and clinicopathological stages, vital status, and
treatment variables. Deregulated gene modules (spots) are indicated on the maps, and coloring
shows the significance of their association with evaluated parameters.

Integrated Multi-Omics Cartography of Lower-Grade Gliomas. The Low-Grade Glioma
cases were classified into four subtypes following WHO 2021 records(Louis et al., 2021). The
unmutated (wild type) IDH1 and/or IDH2 (IDH) gliomas were classified as IDH-wt, meanwhile,
LGG with IDH gene mutations were divided into the IDH-O (Chrl/19codel), IDH-A
(astrocytomas without Chrl/19codel) and IDH-A’ (IDH-mut astrocytomas with Chr1/19codel).
The same LGG samples were previously classified into 8 transcriptomic E1-E8 and 6 methylation
M1-M6 groups based on their -omics characteristics (Binder et al., 2019; Willscher et al., 2021).
The E1 and M 1 groups belong to IDH-wt, E6, and M5 in IDH-O, and E2-E4 and M2-M4 in IDH-
AJ/A’. The E7, E8, and M6 subtypes belong to the neuronal (NL) tumors and have decreased cancer
cell content. The mI-SOM algorithms were used in three-omics data that contains transcriptomic
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(Gex), methylation (Gmx), and CNV layers. Consequently, group portraits are portrayed for each
of the layers. The associations between layers and subtypes were observed by creating pairwise
correlation heatmaps. E7, E8, and M2 were related to NL tumors, subtypes M2 and E3 have
patterns in the IDH-A group due to their decreased methylation level forming a separate methylator
type (Figure 6).
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Figure 6. Schematic summary of the multi-omic analysis of low-grade gliomas.

For the subsequent stages of our research, we have generated group-averaged Gex, Gmx, and
CNV portraits. The mI-SOM algorithm specified 11 spots that were labeled with uppercase letters
(A-K). The spots A, B, C, and G were altered in Gex and Gmx (green), D, E, F, H, I, and J for
CNYV and spot K only in the Gex layer. Between Gex and Gmx selected spots (spots B and G), we
have observed a negative correlation, in contrast to Gex and CNV (spots E and J) which have
shown positive correlations. Gene set analysis showed that the functional context of these spots is
relegated to healthy brain, proneural, inflammation, and EMT (epithelial-mesenchymal transition)
transcriptional signatures in the Gex map, to targets ofthe polycomb repressive complex 2 (PRC2)
related to neural development and to GCIMP, GCIMP-O, GPCR, and RTKII (receptor tyrosine
kinase type Il methylation subtype) methylation modes in the Gmx map and to individual
chromosomes (mostly chromosomes 1, 7, 10, and 19) in the CNV. Notably, Gmx and CNV
changes were not correlated, but both layers were correlated to the expression layer.

We further decided to compare the genetic subtypes with the E- and M- groups across the three
-omics layers to identify factors that are associated with changes in layers of multi-omics data. The
transcriptomic, methylation, and copy number portraits of the IDH-wildtype subtype were similar
to the E1 and M1 groups, while the E6 and M5 subtypes were closer to the IDH-O subtype. The
IDH-A group was highly similar to E4 and M4 groups, and the NL-like subtype was distributed
across all genetic groups because of their low cancer cell content. These results highlight the fact
that the LGG heterogeneity can be better described in terms of transcriptomic- and epigenetic-
based subtyping rather than by genetic groups.
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CONCLUSIONS AND INFERENCES

The explosion of big biological data has opened unprecedented opportunities for the
application of machine learning methods for understanding disease biology, patients stratification
and developing efficient targeted/personalized treatments. From many different ML pipelines
applied to the multi-dimensional omic data, the self-organized maps stand out for their
unprecedented capabilities of dimension reduction with minimal information loss, feature
extraction, and visualization. The “SOM portrayal” method has been applied for solving a wide
spectrum of biological questions, such as understanding of molecular basis of cancers,
neurodegeneration, and aging, identification of disease molecular subtypes, performing patients
stratification and linking it to disease prognosis, etc. Meanwhile, SOM method usage pointed to
its major drawbacks: inability to integrate diverse omic data and issues with extending with new
samples without retraining. In response to these issues in this thesis, we developed two approaches
each handling the issue described above. Out multi-layer SOM pipeline can perform integrative
analysis of gene-centered multi-omic data (expression, methylation, CNV, and SNV), and extract
perturbed gene modules across different omic domains. Moreover, ml-SOM offers a new layer of
analyses aimed at understanding the mutual relations between functional (gene expression),
regulatory (methylation), and structural (CNV and SNV) data, to understand the contribution of
each domain on the functional state of a cell. Finally, the capability to relate the changes on the
molecular levels with clinical indicators and survival may lead to more personalized and effective
treatment strategies.

Another significant improvement over existing SOM portrayal is the development of transfer
learning approach (supSOM) to project new samples to available SOM space. This is particularly
important since it preserves the previous knowledge making comparisons and interpretations
“context™-based.

Cancers have greatly benefited from the advance of ML in the analysis of biological data. The
complexity of cancers and the diversity of perturbations on different omic layers call for the
development of integrated data analysis approaches. Here we demonstrated that our ml-SOM
approach can handle this and provide valuable insights into disease molecular diversity,
mechanisms of development and progression, and extract important prognostic indicators.

In breast cancer we comprehensively characterized the perturbed gene modules and biological
processes in PAMS50 subtypes. Our results showed mostly qualitative changes on the transcriptome
layer for processes associated with proliferation, epithelial-mesenchymal transition (EMT),
immune response, DNA repair, and stromal/stem cell signature. We also observed a principal
difference in the expression of estrogen receptor signaling genes between luminal A and other
cancer subtypes, which can explain the more aggressive nature and worse prognosis in the latter.
Moreover, we demonstrated that the same expression perturbations may be associated with
methylation or CNVs or even SNV in subtype characteristic manner. As an example, the
expression of EMT genes were highest in basal cancer and was associated with hypomethylation,
while the modest overexpression of the same genes in luminal A and luminal B cancers were
positively associated with CNV counts. Finally, pur results highlight the complex subtype-
characteristic associations between gene expression and epigenetic/genomic factors and their
implications for survival and clinical outcomes.

The low-grade glioma is another cancer type characterized by highly variability in genetic
subtypes associated with [IDH1/2 mutations, loss and gains on chromosomes 1, 7, 10, and 19. With
combined multi-omic SOM portrayal we showed that methylation and CNV both affect the
expression landscape but in an independent way. Moreover, there was a bias toward the
contribution of those modalities depending on the LGG genetic group. Finally, we demonstrated
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that the stratification of LGG samples according to the expression and methylation subtypes is
more informative from the prognostic point compared to the genetic subtypes.

Of course, this study has some worth noting limitations. First, some regulatory or structural
data, such as miRNAs (H. Chen et al., 2023), transcription factors (Zacksenhaus et al., 2017),
chromatin modifiers (Zhuang et al., 2020), or topologically associating domains (Campbell, 2019)
were not included in our analysis though they are implicated in cancers. These factors are known
to be implicated in cancers. Another issue is often imbalanced sample sizes in datasets, that can
considerably affect the statistical power of results. Finally, the inclusion of many omic layers can
inflate the complexity of downstream calculations.

INFERENCES

1. A ml-SOM pipeline was developed to enable integrative analysis of multi-
omic data, extracting perturbed gene modules across omic landscapes, and their
functional annotation. It also enables the analysis of mutual associations between
functional ( gene expression) and regulatory modalities (such as methylation) as well as
genomic features (including copy number and single nucleotide variations) and maps
these features to phenotype and clinical data.

2. A supSOM pipeline was developed to enable a transfer learning approach to
project new samples into existing SOM space.

3. Breast cancer PAMS50 subtypes show subtype characteristic perturbations of
gene modules across expression, methylation, copy number, and single nucleotide
variations that are associated with subtype-specific survival and clinical outcomes.

4. Multi-omic SOM portrayal of low-grade gliomas showed better resolution of
molecular subtypes and prognostic indicators of omic-based subtypes compared with
WHO genetic subtypes.
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JABUTABSH CYPEH CAMBEJIOBHUY

XAPAKTEPUCTHKA MOJIEKYJIAAPHOI'O PASHOOBPA3HWI PAKA
MOJIOYHOU KEJIE3bI 1 I'VTMOMbI HA OCHOBE TPAHCKPUIITOMHDBIX,
TEHOMHDbIX U SIIMM'EHETUYECKHUX JAHHBIX

PE3IOME

KimioueBble cjioBa: MalmHHOE 06y‘{eHI/Ie, CaMOOPTraHU3YIOIUEC KapThl, OITYXOJIb MOJIOYHOMN
AKEIIC3DI, ITIMOMa

B mocnenHue rojpl MHOTOUMCIEHHBIE WCCIIEJOBAHUS, M3yYAlONMe MEXaHU3MBl Pa3BUTHS
OITYXOJIEH, TIPUBENH K BOZHUKHOBEHHIO HOBOM S5pBl B MejuimHe. HecMOTpsl Ha TO, YTO 5TH
HCCIeIOBaHMST Pa3palaThIBAIOT HOBBIE IIOJXOABI K JIEUCHHIO M IIOBBIIAIOT BBHIKUBAEMOCTH
GOJBHBIX, CYIIECTBYET 0CTPasi HeOOXOMMOCTh B BCECTOPOHHEM M3yUeHUU OOJIE3HH, YTO B CBOIO
ouepe/ib TI03BOIUT YCIIEIIHO IIPOrHO3UPOBATh U IIPEJOTBPAIIaTh 3a00I€BaHIs, a TAKKe JICUUTh
narueHToB. [1o Mepe HAaKOIUICHMSI HOBBIX 3HAHMM CTAHOBHUTCS SICHO, YTO OITYXOJb JOCTATOYHO
TPYAHO HCCIEN0BaTh U JIEUUTh U3-3a €ro CIOXHOCTH YU HEOJHOPOJHOCTU. VcciepoBanHus B
OCHOBHOM HAIIpaBJICHBl Ha BBIIBICHUE MOJIEKYISIPHOTO pazHOOOpasusl (MEKOITyXOJIEeBOH
T€TEPOreHHOCTH ) PA3IUUHBIX THIIOB OITYXOJIH, YTOOBI IIOBBICUTH JIOCTYIIHOCTE JICUEHUS LI Gollee
IMUPOKUX cIoeB HaceneHus.. C JPyrol CTOPOHBI, BHYTPHOITYXOJIEBas I'€TEPOI€HHOCTh MMEET
KIIIOYEBOE 3Ha4YeHHE B 0ONacTH IIEPCOHATM3UPOBAHHON MEJUIIMHBL M HAYUHBIX HCCIIEOBAHUI,
IIOCKOJIBKY OHa CIIOCOOCTBYET BBISIBIIEHUIO HOBBIX OCOOEHHOCTEH B Pa3IMUHBIX 0 ITHIIAX.

Brut0 0GHApYKEHO U OIIMCAHO MHOKECTBO M3MEHEHUM Ha TPaHCKPUIITOMHOM, T€HETHIECKOM
U SIMIEHETHYECKOM YPOBHSX IIPH Pa3IMUHBIX OITyXOJEBBIX 3a001€BaHUSX. | THOMBI U OITyXOJIH
MOJIOYHOM JKele3pl He SBIBIOTCS HCKIIOUEHHEM, H3-3a BBICOKOM BHYTPUOILyXOIIEBOH
HEOJHOPOJHOCTA 3TUX BHJOB paka IIPEJIIoNaraercs, YTo IOTEHIHATEHO 3()OEKTHBHEIMU
MeTOJIaMH JICUEHHMSI MOXKHO IIpeHeOpedb M3-3a TOro, 4YTO OIPE/elICHHbIE MOJIEKYJISIPHbIE
W3MEHEHMSI MOTIYT OCTarhCsl He3aMeUeHHBIMU. [lojXOoipl K JIEUCHHIO KOPPEIUPYIOT ¢
MOJIEKYJISIPHBIMU OCOOEHHOCTSIMH, TIO3TOMY CYIIIECTBYET OCTpasi HeOOXOIUMOCTh B pazpaboTke
TaKUX MHCTPYMEHTOB, KOTOPBIE MOTYT YUMTHIBATh OCOOEHHOCTH U IIPOBOJMTH BCECTOPOHHUM
aHamM3 MOIEKYJSIPHOTO pasHooOpasust 3aColieBaHMSL. Takue WMHCTPYMEHTH YKe IIHPOKO
HCIIONB3YIOTCS B HAYYHOH U KITMHUYECKOH o0nacTsix. OlHaKo HHCTPYMEHTH! CHOUH(OPMATHKH B
OCHOBHOM IIpeTHa3HAYEHbI IS BBIIBIICHHS 0COOEHHOCTEH TOIBKO Ha OIIpeielIeHHBIX YPOBHSIX. C
JIPYTOM CTOPOHBL, IIOJXOJbI, OCHOBAHHBIE HA MAIMHHOM OOYYEHMH, B OCHOBHOM pEITAioT
po6ieMy KiaccU(pHUKaIMy MaleHTOB WIX IIPOTHO3UPOBAHMS THIIA 3a00JICBAHUS Y TTAITHEHTOB C
HEU3BECTHBIMH JTUArHO3aMH.

Iempo wmccienoBaHUS — SBISiETCS  pa3paloTKa &ITOPUTMOB — MAIIMHHOTO — OOYHEHWIS,
OCHOBaHHBIX Ha MYJBTHOMHBIX JAHHBIX, U WX IIPUMEHEHHE U OIMCAHUS MOJEKYIISIPHOTO
Pa3HOOGPa3wsl OITyXOJIM MOJIOYHOM YKele3bl U TITHOMBIL.

Beorienenne GpaxTopoB, NEXKaIMX B OCHOBE U3MEHEHUIN B OITYXOJIEBBIX 00pa3liax, SBIIETCS
OCHOBOM JUISl TTeNIEHAIIPaBICHHOTO U IIEPCOHATN3UPOBAHHOTO JICUSHUS, [IPeIHa3HAUEHHOTO IS
OIIpe/IeIIEHHBIX TIO/[TUIIOB U JIae I OJIHOT0 yenoBeka. HecMoTps Ha To, 4TO GBLIO pa3paboTaHo
MHOKECTBO MOJICNEH Il aHalM3a PasiIMYHBIX BUJIOB OIYXOIM, OHM YacTO OTPaHHYMBAIOTCS
OOIIMMH HCCIIEJOBAHMSIMHI M3-3a HEOJHOPOHOCTH U CIOKHOCTY 3aboeBaHuil. PazpaboTaHHBIH
HAaMH IT0/IX0/ MAIIIMHHOTO 00YUEHHSI [T03BOJISET PEIIUTE 3TH IIPOOIIEMBL. B 4acTHOCTH, 3TOT METO/T
TIpe/{HA3HAuEH UL BBIIBICHUS MOJIEKYJIIPHBIX OCOOCHHOCTEN paka, YCTaHABINUBAET CBSI3b MEX/ILY
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W3MEHEeHHbIMM  (akTopamH,  OOHapyXeHHBIMH B  oOpa3liax, Y  U3MEHEHUSIMH,
3apEeTUCTPUPOBAHHBIMU BO BpeMsI KIIMHUUECKUX HCCIIeJOBaHU.

PazpaGoTanHple MOJeNM IOKa3ald 3HAUMMBIE PE3yIbTaThl Ul OOOMX THIIOB OIYXOIH,
KOTOpbIe OBUIM IIOJTBEPK/CHBl aHATOTUYHBIMU DE3yIbTaTaMH B JIPYTHUX HCCIIENOBAHUSX, UTO
TOBODHT O JIOCTOBEPHOCTH 110,1x01a. 1 [py HcTI0Nb30BaHMM MeTO1a OBUTH BBISIBIICHBI CIICI(DIIHBIE
accOIMally B Pa3IMYHBIX II0ITUIIAX OIyXOIH MOJIOUHOM KeJle3bl, a TAKKE BBIJIEICHB! KIIacTePh
OIIpEJ/ICTIEHHBIX TE€HOB U ObUla WMIEHTHOUIMPOBaHA HX CBA3b KaK C IIOJTHUIIAMH, TaKk U C
KIMHUYECKUMH IIapaMeTpaMHd M BBDKUBAEMOCTHIO. B ciydyae OIyXONMHM MOJIOYHOH Kele3bl
W3MEHEHMSI B OKCIIPECCMM TI'€HOB B OCHOBHOM OJHOHAIIPABIEHBI, M DPazIMUMs CKopee
KOJIMYECTBEHHBIE, YeM KauecTBEHHBIC, a METWIMPOBAHME II0 CPaBHEHHMIO C OSKCIIpeccHei,
TIPOSIBILIET HAUOOIBIIYIO BapUabebHOCTh B PasHBIX 0/BUaX. 3MeHeHNe KOIMUecTBa KOIIMH
T€HOB HOCHUT OONMH XapakTep /UL BceX IMOATHIIOB, B TO BpeMsi Kak W3MEHEHUS
OJTHOHYKICOTUAHBIX TomMopdu3MoB (SNP) HesHaumTenbHBL. B pesynbTate KOMITIEKCHOTO
HCCIIeIOBaHMS TIIMOM OBUTO 3aUKCHpOBaHO, 4TO KiIaccUuKaims o0pasloB II0 3HAYESHHUSIM
SKCIIPECCUM M METWIMpPOBaHMS SBIsieTcs Oolee HMHPOPMATUBHON, UeM TIe€HEeTHYecKas
knaccupukarusl. PazpaGoTaHHBIA JOTIOMHUTETRHBIT MeTol  (Sup-SOM) MOMKET  YCIIeITHO
HHTETPUPOBATh HOBBIE 00PasIibl B 00YUEHHYIO MOJIENb, UTO IT03BOJISIET 000HTH JIBOHHOE 00yUeHHe
MOJIENH.

Taxkum oGpa3om, mpoBeieHHas paboTa HMMeET IOTCHIMAT UL YIyUIIEHHS METOJ0B
KIaccupukarmy, a Takke MOXET CTaTh OCHOBOM I YIYWIIEHHS  II0JXOJIOB
TIEPCOHATU3UPOBAHHON METUITUHEL
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