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Description of the Work

Topic Relevance and Problem Definition: Within the realm of imbalanced
and recursivef/iterative classification algorithms, there exists a practical need
to create novel algorithms that can classify objects into predefined classes
through successive transformations. To investigate a dynamic recognition
problem using medical datasets, in the thesis, we define a problem called
target class classification (TCC), which implies classifying/allocating the
agents (objects) into the target-normal class through sequential actions. The
work begins with graph theory and discrete optimization, examining models
with deterministic transition outcomes, and then we obtain experimental
results using sequential modeling procedures such as graph search and
reinforcement learning with non-deterministic transitions which are later
discussed in detail. We also investigate the binary target/non-target
classification case as an extension to the main defined problem. Even though
the thesis contains significant medical data processing and modeling
components, we understand the challenges and responsibility associated with
working with medical datasets, thus we try to put significantly more emphasis
on the algorithmic implementations, which can allow using these approaches
for other domains as well.

The defined problem of the thesis shares the most similarities with
Hierarchical Reinforcement Learning (HRL) research area. HRL provides a
divide-and-conquer approach for solving traditional RL problems by
abstracting complex problems into smaller sub-problems. HRL tries to achieve
compositionality using two main mechanisms: temporal abstractions and state
abstractions. Temporal abstraction divides the problem into temporally
extended actions (sub-behaviors) consisting of a sequence of primitive
actions for solving a more complex problem. The second form of abstraction
is the state abstraction. In high-dimensional spaces, it is extremely difficult to
learn the best action in every possible state. For this reason, grouped
representations of similar states in terms of transition dynamics and reward
function are used for building learnable state abstractions’.

In this thesis, we put compositionality and stage-based modeling on the basis
of our experiments to come up with an algorithmic and software toolset to
solve the defined TCC problem. We explore the problem using medical
datasets not only from the RL perspective, but also from graph construction
and optimal pathfinding, ensemble-based iterative classification, and
combinatorial optimization, utilizing computer science and machine learning
methodologies, where algorithms are proposed, and validation results are
obtained. Problem formulation for target class allocation in a sequential
procedure, data division in a stage-based format using tabular and graph
structures, algorithmic implementations, and derived results may allow to:
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o Use proposed algorithmic approaches to investigate solving target-
normal class allocation/classification problems with a stage-based
(multi-stage) approach, facilitate research advancements in the medical
and other domains.

Currently, there is not much scientific literature that uses a multi-stage
approach for finding optimal treatments, especially for graph-based
representations, which can be due to:

e The approach is new and has not yet been widely experimented.
e The problem of finding optimal treatment strategies is challenging and
can be approached from different aspects.

Overall, we provide a graph-theoretical analysis of the target class
classification (TCC) problem and connect these findings to sequential
searching and iterative classification with stages, provide a novel link between
multilayer graphs and reinforcement learning for solving a TCC task for the
medical and other similar domains.

Thesis Aim: The thesis aims can be summarized as follows.

¢ To come up with a mathematical description and analysis of a sequential
target class classification/allocation problem and propose a
mathematical model that can solve this task in terms of classification
and target class transition logic.

o To explore the obtained mathematical model from the perspective of
existing computer science and machine learning research directions,
such as graph pathfinding, reinforcement learning, and iterative
classification to enhance theoretical results with algorithmic evaluation
and come up with a practical toolset for the TCC-type modeling and
analysis.

o To propose algorithmic approaches regarding sequential (stage-based)
target class classification/allocation.

Research Data and Methodologies: In this thesis, we used graph modeling
and search procedures, neural networks, and reinforcement learning-based
methods suitable for discrete and continuous learning tasks to come up with
algorithms to solve optimization tasks in a sequential manner. In the scope of
the thesis, we obtained credentialed access to the MIMIC-III clinical
database?, which contains health-related information such as demographics,
laboratory test results, procedures, medications, and various other medical
statistics about forty thousand patients allowing us to conduct numerous
analytical studies. We preprocessed this database in a stage-based approach
and obtained data in tabular and graph (network) formats so that we could

4

2A. E. Johnson ef al., “MIMIC-II, a freely ible critical care " Scientific data, vol. 3, no. 1, pp. 1-9, 2016.




address the problems defined in the thesis. We also used eight publicly
available medical datasets from the UCI Machine Learning repository3which
have smaller dataset sizes and are more suitable for traditional regression
and classification problems. We solved procedural and recursive
programming tasks in Python, worked with main libraries such as NetworkX,
PyTorch, Django, OpeanAl Gym, scikit-learn, SciPy, etc.

Thesis Scientific Contribution:

¢ Mathematical formulation, description, and modeling of a target class
allocation task. The simple deterministic case ofthe problem is analysed
and solved using graph-theoretical algorithms.

¢ An algorithm to solve the TCC task for the non-deterministic case using
directed acyclic graphs (DAGs) evaluated on medical datasets. The
algorithm constructs a DAG with multiple layers and then searches for
the shortest path leading to the vertex corresponding to the target-
normal class. Provision of a cost function and an admissible heuristic
function for the path to be optimal. Clustering-based evaluation
methodology for the searching results and a serverless approach based
on backend and cloud techniques for further evaluation.

¢ An algorithm that trains a Deep Q Networks (DQN) and Value Iteration
reinforcement learning algorithms to reach the vertex corresponding to
the target-normal class on a multilayer graph representation. It builds on
the non-deterministic TCC concept but considers a more complex
connectivity logic. As a result, a multilayer graph formation based on
medical datasets, connectivity and reinforcement learning state-space
construction logic, and reinforcement learning algorithms capable of
learning on such representation and performing a sequence of actions
at different stages (layers) to reach the target normal class is proposed.

*« Ensemble-based iterative neural network architecture comprised of
three separate networks capable of classifying target/non-target classes
(binary case) as an extension to the TCC problem is proposed, which
performs ajoint optimization of three networks with medical data.

¢« An algorithmic procedure aiming to improve gradient descent
optimization by providing a cosine similarity-based approach to scale
the learning rate during the gradient descent update process in a
multiclass logistic regression. The approach is experimented on eight
medical datasets.

Practical Importance: Proposed algorithmic approaches allow investigating
and solving target-normal class allocation/classification problems with a
stage-based (multi-stage) approach and facilitate research advancements in
the medical and other domains.
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Challenges and Limitations: There are limitations regarding data
processing, which could have impacted the models’ learning performances.
We evaluated learning over three fixed stages and for some experiments
having more data and stages could have helped to conduct additional testing
and evaluations.

Terminology:

o The terms vertex, state, node are used interchangeably.

o The terms edges, actions, treatments are used interchangeably.
e The terms object, agent, patient are used interchangeably.

o The terms stage, layer are used interchangeably.

Publications List: There are 5 journal publications, 3 of which in Scopus
Indexed journals (1in Q2, 2 in Q3), and 1 conference proceedings publication.

2 Deterministic Recursion to Target Class Classification

In this section, a mathematical formulation and modeling of the problem of
target class classification (TCC) policy from a graph theoretical perspective is
given. The formulation includes defining the problem, and the dataset format
that forms the state space, providing a TCC model structure in terms of
deterministic transitions. Graph structures are obtained and analysed, which
can be used as a basis for policy evaluation results for performing recursive
classificationftarget class allocation. These methods and representations of
this work directly serve the basis of works described in Sections 3, 4, and 5 to
solve medical target class allocation tasks.

Subsection 2.1: The problem and the target class classification (TCC)
framework are described, and relevant scientific literature on classification,
reinforcement learning is mentioned. The novelty of the approach is first
presented.

Subsections 2.2 and 2.3: A detailed description of the TCC framework,
including rules about the environment, objects, and transitions is given. Abrief
description of objects, which are the entities on which the model should act to
transfer from one class to the next is described.

Subsections 2.4 and 2.5: Mathematical definition of the features and the
learning set is presented. Features are numerical vectors characterizing the
objects.

Subsections 2.6, 2.7 and 2.8: Actions and transitions of objects overtime are
described. The concepts of track and trellis are defined, which is the
progression of an object over the time domain after an action is applied to it
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at a given state. The transitions of all objects across the time domain is the
trellis. Problem tasks are distinguished.

Subsections 2.9, 2.10 and 2.11: The data format is described, a
mathematical formulation of the problem of target class classification (TCC)
from a graph theoretical perspective is given. The deterministic transition as
atree is presented in Figure 1. Theorems 2.1 and 2.2 are presented as main
theoretical outcomes. Conclusion remarks are presented.

Theorem 2.1. If graph G of a TCC model is connected, it is a tree with root
vertex vO and edges oriented from the terminal/leaf vertices and internal
vertices of the tree towards the direction of the vertex vO.

Figure 1: Connected TCC tree structure in case of simple deterministic
transitions.

Theorem 2.2. If graph G of a TCC model is disconnected, it consists of one
oriented tree, rooted to vO, and several other connected components
structured as one-cycle oriented cactus graphs. Cactus cycle is oriented, and
tree-like structures inside each component have an orientation to the cycle.

Thus, the findings show that if the graph is connected then it is a rooted tree,
and the policy is correct/implementable because all the states by transitions
will be allocated to the target class. But when the graph is disconnected, then
additional components are one-cycle cactus graphs, and states from these
components are not transferable by actions to the target class. This means
that actions or transitions must be modified in a way to break the cycles and
to make transitions from additional components to the basic tree component
where the target state belongs.



3 Solving a TCC Problem using Graph-Search Algorithms

This section investigates the non-deterministic case (multiple actions
originating from a single vertex) of the TCC problem. Vertices, which denote
individual agents having features, are connected to each other based on
feature similarity, and the stronger the similarity, the stronger the weight of the
connection between two vertices. Features are observed from actual
datasets. Such methodology is possible with a DAG data structure, and such
structure is constructed layer by layer based on the concept of stage. Each
layer consists of vertices (with features) corresponding to the given stage from
the actual medical dataset. Unlike section 2, where the path is deterministic,
there is a need to search and find the optimal path leading to the target state.
For this reason, a heuristic function is also proposed, showing its admissibility
to be able to find the shortest path using the A* searching algorithm. In
summary, an algorithm is provided that can construct a DAG comprised of
multiple (three in the experiment with medical datasets) layers and search for
the vertex denoting the target normal class. A second algorithm is also
provided, which can construct and search for a target solution using trees and
cyclic graphs, but here the construction does not directly use the concept of
layers. Evaluation approaches are also presented. The experiment is
described using a medical context.

Subsections 3.1 and 3.2: The approach for solving the non-deterministic
TCC problem with multiple stages using a graph-search methodology on
medical datasets is described. Contributions of the work are presented, and a
literature review is conducted.

Subsection 3.3: The data processing is described. Two algorithms are
provided, which perform target class allocation on the multi-stage medical
datasets by constructing a DAG (Figure 2), a tree, and a cyclic graph. Cost
function 1 and heuristic function 2 are provided for performing the search.
Root Mean Squared Error (RMSE) and Kolmogorov-Smirnov test (kstest)
methods are chosen to describe the similarity between the features of the
given two vertices. The names of the methods match the respective function
names from scikit-learn, SciPy libraries.

Definitions 3.1 and 3.2 describe the problem and proposition 3.3 shows that
heuristic function 2 is admissible and the path is optimal, which is proved by
induction.

Definition 3.1. Suppose G is a DAG representing the multi-stage drug
treatment state space. start is the initial state, T(s;,a) is the transition model
that returns state s';,; belonging to stage i + 1 after taking action a at state s
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from stage i. d denotes the maximum depth which is equal to the number of
treatment stages, and target denotes the end state located at depth d.

Definition 3.2. Let C(nd-k,target) denote the cost of the shortest path from
node n at depth d —k to the target, and h(nd-k,target) denote the heuristic
cost of n to the target. C(nd-k,target) is given by Equation 1, and
h(nd-k,target) is given by Equation 2, where Fh and Ftarget are the feature
vectors of node n and the node target. The range of C(nd-k,target) is
Rc(nd ktargety-k m[1,1024], and the range of h(nd-k,target) is
“h(nd-ktarget) k m[0,1].

C(nd-k,target) = k ~ (I + RMSE(Fn,Ftarget)) 1

h(nd- k,target)

k A (I —kstest(Fn,Ftarget;j) 2

Figure 2: DAG example 1

Proposition 3.3. Given a DAG G, h(nd-k,target) < C(nd-k,target) for any
node n k steps away from the maximum depth d.

Subsections 3.4, 3.5, and 3.6: The results are presented, clustering,
betweenness, and cosine similarity-based evaluations, and a serverless
architecture are provided for testing the results of the algorithms on the
datasets used in this work, showing that the algorithms can solve a non-
deterministic TCC problem on a multi-stage graph representation. Concluding
remarks are provided.



4 Solving a TCC Problem using Multilayer Graphs and Reinforcement
Learning

This section examines a non-deterministic case of the TCC problem with the
use of RLtechniques. In addition, we impose an additional complexity element
and assume that transitions between the vertices in the same graph layer are
also possible. We use the concept of multilayer graphs (Figure 3), where a
graph consists of layers, each layer being a graph (cyclic in most cases) itself.
A vertex can be connected to vertices both in the same layer and in the
successive layer, making the task of finding the correct transition more difficult.
The goal is the same as in the previous two sections: solve a TCC problem
with the correct transitions leading to a vertex corresponding to a target-
normal class located at the last layer of the multilayer graph. The experiment
is conducted using medical datasets and, in this context, the vertex denotes
the patient features who have been discharged to Home location (target
class). However, to reach a target class in the last layer, the algorithm should
first learn to reach the normal class in each of the previous layers, which we
can be regarded as intermediate normal classes. We use model-based Value
Iteration and model-free DQN reinforcement learning algorithms to teach the
agent to reach the normal class by layer-by-layer navigation. We provide a
reinforcement learning setting (state space) using multilayer graphs
constructed as a Gym environment and provide special transition and reward
logic so that the agent can reach the target class without being stuck in infinite
cycles. Comprehensive evaluations obtained from analysing the number of
times the target-normal class is reached, steps taken to reach the solution,
and collected reward show that we have obtained an environment and
learning state space that can efficiently guide the agent (patient) to a target
normal class by navigating through sequential stages. The experiment is
described using a medical context.

Subsections 4.1 and 4.2: Description of the problem and multilayer state-
space representation is provided. Contributions are listed. A comprehensive
literature review of reinforcement learning, its applications in healthcare, and
multilayer graphs is conducted.
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Figure 3: Multilayer graph for performing reinforcement learning.

Subsection 4.3: Data processing to obtain a multilayer graph (Figure 3) over
three stages is described and a formal definition is given. The logic of
interlayer and intralayer connectivity of the multilayer graph, including the
reward formulation, is presented. Model-based learning in the form of the
Value lteration algorithm and model-free learning in the form of the DQN
algorithm are detailed. The DQN implementation (Algorithm 1, labeled as
Algorithm 3 in the dissertation) denotes the main experiment. Existing
algorithms are modified to perform learning on the multilayer graph for solving
medical treatment optimization tasks. The RL agents learn to navigate through
sequential stages, each stage corresponding to a layer in the multilayer graph
to reach to atarget class (solution) in the last layer. The last layer corresponds
to the last stage in the medical recovery process. Graph statistics for each
layer in the multilayer graph are presented.

Subsection 4.4: The algorithmic results through evaluation are described,
demonstrating good learning performance for both model-based and model-
free scenarios. The results of the small experiment regarding DQN-based
binary classification are mentioned.

Subsections 4.5 and 4.6: The main limitation of the work is mentioned and
concluding remarks are presented.
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Algorithm 1

Algorithm 3: DQN Learning on a multilayer graph
Obtain a dictionary p containing a combination of network parameters from a function which
iterates over parameter combinations;
for patient_id #—1to Npa iems do
for t t—1tO Ns,ages do
From p select the optimizer, learning rate, max timestep, update rate, epsilon greedy;
Obtain the graph corresponding to timestep t;
Initialize the agent, Q network, target Q network, and empty replay buffer;
Initialize episode_steps, episode_terminals, episode_rewards empty lists;
for episode +—1to Nepisgj es do
Make reward_sum=0;
Reset current state to the start state;
for step 1 tONmaxjimesieps do
Sample an action from the environment using e-greedy method;
Perform the action on current state, observe next state, collected reward, terminal;
Add reward to reward_sum;
Add a list of state, next state, action, reward, terminal to the replay buffer;
Make next state as current state;
if terminal is True then
| break

end
end
Append step, terminal, reward_sum to episode_steps, episode_terminals,
episode_rewards lists respectively;
Update the Q network using gradient descent, then use Q network parameters for
updating the target Q network;
end
Output a solution using terminal from the last episode;
Append reward_sum, episode_steps, episode_terminals, episode_rewards to p;
end
Obtain a final solution per patient, using solutions from each t then append to p;
end
Evaluate results;

5 Solving a Binary Classification Task with Ensemble Iterative Neural
Networks

In this section, we shift from graph-based theoretical and experiment
evaluations to tabular-based iterative (sequential) classification, where we aim
to achieve class separation between target (Home class) and non-target
classes, unlike the previous findings where we tried to find the optimal path to
the single target-normal class.

Learning is again based on stage-by-stage progression using the medical
MIMIC-III clinical database. We preprocess the data based on sequential logic
and obtain three stages, where each stage includes clinical observations of
patients from their recovery process. Although the learning space is not graph-
based, the data processing follows the data, feature, and component
descriptions presented in Section 2. We obtain an ensemble-based iterative
neural network architecture, which uses features and medications at each
stage to correctly identify the medications for each successive treatment stage

12



and in the end perform binary classification to predict whether the patient
(agent) will be discharged to Home (target-normal class) or not. We perform
a joint optimization of the parameters of three networks using an MSE loss
function. Synthetic data is generated based on the preprocessed medical data
to increase the dataset size, and the results show that based on the initial
features and medications, it has been possible to identify actions (treatments)
and classify target/non-target classes with high accuracy treatments for each
learning stage.

Subsections 5.1, 5.2 and 5.3: The iterative classification problem, proposed
feedforward neural network-based iterative ensemble model, and
contributions are listed. A literature review is conducted, and data processing
is presented in detail.

Subsection 5.4: The experimental approach and the iterative ensemble-
based neural network architecture (Figure 4) are described. The approach
uses a treatment prediction network (Network 1) and a feature prediction
network (Network 2) during a given stage to correctly identify the treatments
for each successive stage, and in the end perform binary classification
(Network 3 for output) to predict whether the agent will be discharged to Home
(positive label) or not. In Equation 3, 01,02, 03 are the parameters of individual
MSE loss functions L1, L2 and L3 (treatment prediction loss for two stages and
output prediction loss) and n is the number of training samples. A joint
optimization of these networks is performed for each epoch.

L=i(Li(0i)+L2(02)+L3(03)} 3

Subsection 5.5: This subsection lists the model's training and evaluation
results through visualization and F1 score. Good learning performance is
observed, but there is also room for improvement.

Subsections 5.6 and 5.7: Limitations and concluding remarks are provided.
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6 Solving a Binary Classification Task using Cartesian Product Action-
Combinations and Neural Networks

This section is dedicated to supplemental findings that, while not directly
central to the TCC problem, provide additional context, experiments, and
understanding. Similar to the previous section, in this section we use stage-
based medical tabular data to correctly classify target/non-target classes.
Here we try to optimize the medical treatments at the stage, analogous to the
task of finding the best action at each stage. For each agent (patient), we try
to identify potential best actions (treatment strategies) at each stage using
distance MSE, MAE, clustering KMeans, Mini Batch KMeans, and distribution-
based Kolmogorov-Smirnov methods, obtain a Cartesian product set and
vector concatenations of all the triplets in the set. The names of the methods
match the respective function names from scikit-learn, SciPy libraries. The
result is a dataset denoting different possible actions, then we perform binary
classification using a feedforward neural networks-based (FNN) model to
check the efficiency of the approach as an extension to the target class
classification task, which implies classifying whether the agent will be
discharged to Home or not. The experiment is described using a medical
context.

Subsections 6.1 and 6.2: The problem is described, and the contributions
are listed. A literature review is conducted.

Subsection 6.3: This subsection first describes the data and data
preprocessing methodology. For each agent, potential best treatments for
each stage are identified using distance MSE, MAE, clustering KMeans, Mini
Batch KMeans, and distribution-based Kolmogorov-Smirnov methods
(Equation 4), obtain vector concatenations of Cartesian product treatment
combinations (Equation 5) over three stages as a treatment dataset and test
them on a classification task.

X; =Tops{f(x,7):x € D;} 4

In Equation 4, D; denotes a dataset from one of the three stages, r is a given
row, f is a given function (method) denoting similarity, and Tops is an operator
that finds the top five arguments maximizing the similarity function f. X; is the
set of five instances.

C = (%45, %2, X3 ): 17 € X1, %5 € Xp, X35 € X3 5

In Equation 5, (xli,xzj,x3k) is the set of all tuples such that x;; is a vector in
Xy, xy; is @ vector in X,, and x5 is a vector in X;. C denotes the Cartesian
product.
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Subsections 6.4 and 6.5: The results show that clustering and especially
distribution-based similarity metrics can result in the identification of optimal
actions and dataset formation leading to a classification of the target/non-
target classes with high accuracy. The training performance from a five-fold
cross-validation of the distribution-based method is shown in Figure 5.

Figure 5: Kolmogorov-Smirnov test (kstest) results.
Subsections 6.6 and 6.7: Limitations and summary results are provided.
7 Stochastic Gradient Descent Update Rule using Cosine Similarity

In Sections 4, 5, and 6 it was observed that neural networks struggle to learn
well when stochastic gradient descent (SGD) is chosen as the optimization
algorithm. This work tries to address this problem by providing cosine
similarity-based scaling of the learning rate during gradient descent update in
the multiclass logistic regression algorithm. Here we evaluate the algorithm
not on the preprocessed stage-based datasets as it was done in Sections 3,
4, 5 and 6, but instead on benchmark medical datasets suited for
classification tasks from the UCI Machine Learning repository. The results in
terms of the F1 score show that this approach can potentially improve the
classification performance.

Subsections 7.1,7.2 and 7.3: The problem, methodology, and contributions
are listed. A concise literature review on the gradient descent-based
optimization methods is provided and the datasets used for the experiments
obtained from the UCI machine learning repository are mentioned.

Subsection 7.4: Cosine similarity between each training record and the
average vector of the training batch is calculated and then the learning rate is
scaled which updates the gradient vector (Equation 6). The rationale is that
the smaller the directional similarity between an instance and the batch

15



average, the smaller the update, and vice versa. This is done to prevent
dissimilar records from having a big impact on the gradient update. This
approach is evaluated for standard SGD (Algorithm 2, labeled as Algorithm 5
in the dissertation), SGD with Momentum, and SGD with Nesterov
acceleration for different epochs.

learning_rate = cosine_similarity(X,x) x learning_rate 6

Algorithm 2

Algorithm 5: SGD scaling with Cosine Similarity
Data: X,y, leaming_rate, JV_epochs, scale
Initialization;
X : vectorof size 1x a,where n is the number of columns in X;
model.classes: distinct classes iny;
model.loss: empty list;
model, weights: zero matrix of size mxn, where m is the number of model classes, n is the
number of columns in X;
model.bias: zero matrix of size 1x n, where n is the number of model classes;
model.predict!): performs linear regression followed by softwax activation;
model.cross_entropy(): calculates cross entropy loss;
model.get gradients!): calculates gradients of weights and bias;
fornt—1loN*hs do
for i 0 to Nfa,t, do
X_batch=X[i,];
y_batch=y[i,;];
y_pred=model.predict(X_batch);
loss=model.cross_entropy(y_batch.y_pred);
model.loss.appendtloss);
d_weight,d_bias=model.get_gradienls(y_batch,y_pred,X_batch);
“ifscaie=True then
cosine_similarity=cosine_similarity{X, X_hatch);
if cosinesimilarity < 0 then

I continue
end
learniiig_rate=eosine_simtlarily x learning_rate
end
model.weights =learning_rate x d_weight: model.bias-=learning_rate x d_bias;
end

end

* sign in the if statement of Algorithm 2 denotes the scaling, the rest is the
standard implementation of the multiclass logistic regression algorithm.
X in Equation 6 is equivalent to X_batch in Algorithm 2.

Subsections 7.5 and 7.6: The results in terms of the F1 score show that
this approach can improve the models' classification performance. Concluding
remarks are presented.

8 Algorithmic Complexity Analyses

Complexity analyses of the algorithms are provided. All the algorithms have
higher-than-quadratic complexity.

Summary: Figure 6 presents a high-level visual summary of the dissertation.
Section 7 experiment, which supplements other findings but is not based on
a multi-stage approach is not listed in the figure.
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Figure 6: Visual summary.
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THhuwdhy Gwuwsnnnipjwt fuunhpubph dnnGuynpnd gpwdwghu
wignphpdubph b dipbuwjwljwt nunigdwt dipnnutph Yhpwndwdp

Udthnthwghp

NEYnpupy/pinbipwnhy nwuwwpgdwu wignphpdubph whpnyend wnyw
E unp wignphpdutip unbtindtnt gnpduwlwu wuhpwdbownieinu, npnup
Ywpnn U wnwplwubpp nwuwlwpgl] twhiwwbu uwhdwudwd nuubpp'
hwonpnwywu  JGpwihnfunwdubph  dhongny:  Pdolulwlu  wndjwiubph
Yhpwndwdp nhuwdhly dwuwsnnnipjwt uunhpp hbnwgnunbine bwywnwyny
wwnbuwlununipywu dbe uwhdwuynid § phpwiuwihtu nwuh nuuwlwpgdwu
(TCC) fuunhp, husp Lupwnpnud | wnwpluubph nwuwlwpgnud/hwnlugnid
phpwiuwihu-unpdw) nwuht' hwenpnwywu gnpdnnnieniuubiph dhongny:
Wluwwwupp  uludnud £ gpwdtbph  wbungniuhg b nhulpbin
owywmhdwwgnidhg,  wjunthbinl  unwgymd U hnpdwpwpulut
wpryniupubip' ogunwgnpdtiing  hwonpnwlwy  (thnyught)  dnnbjuynpdwi
pupwgwlwngbp, huswhuhp Gu thuwpnup gpudpnd b wdpwwundwu
nwnignwip:  QUwjwd  wwnblwfununipintup wwpnitwynd £ pdoluljui
wnwutph dowldwtu b dnpGudnpdwt Juplinp pwnwnphsubp, Ewlwu
nwnpneintup nwpdynid b wignphpdwlwu hpwgnpdnwfubiph ypw, npnup
peny] Yuwl dnnbgnudubpp Yppwnb] bwlb wy whpnypubph  hwdwp:
Uwhdwujwé fuunhpt nith  udwungynitt hhGpwplupy - wdpwwundwu
nwnigdwt hbiwn (HRL), hust wnwewnpynud £ pudwupp L inhppp dnnbignud'
pwnn fuunhpubipp  Ybpwdting wybh thnpp Bupwiuunhpubph:  HRL-p
thnpénud £ hwutl] pwnunpbhnigjut oqunwagnpdtiny Gpynt hhduwlwu
dbfuwuhqdubp’  dwdwuwluwiht W Jh6wlwiht  wpunpwlghwubp:
Uwbuwfununyejuu hhdpnd npynd & pwnunpbihnuygniup W thnywihu
bnwuwyny Yuwwpdwsd dnnbjwynpndp’ unwuwne TCC fjutunph jnddwt
wignphpdwlwu b dpwapwiht gnpdhpwlwaqd: Oquwgnpdtiing pdoywlw
wnjwiubn, fuunhpp nunfuwuhpynid £ ng dhwju wdpwwundwu nwunigdw,
wy] Uwb gpwdubph Yunngdwt b gpwdnd owwhdw| Gwlwwwphh
thunpdwt,  dnnbkjubph  Jpwynpdwt  Jpw  hhdudwd  hnbpwnpy
nwuwlwpgdwy, Yndphtuwwnp  owwhdwjwgdwu  nbuwulyniuubphg'
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ognwgnndtiing hwdwlwpgswiht ghnnyzjwiu b dapblwjwlwi nwunigdwt
dbennubip, npunbin wnwgwnlynid Gu wignphpdutp’ twiwiny guwhwwnnwiubn
L unwiuwiny Yhpwnwlw wpryniupubp:

Uwnbuwununipju twjwwnwyp

o Unwliwy hweonpnwywu Gnwlwyny rhpwhuwyhu nwuh
nwuwywpagdwlu (TCC) puunph dwpbtdwwnhuywlu Uywpwahpp W
yGpnonipgntup b wnwewnytp dwpbdwnhywywl dnnb, npp Ywpnn
E puunhpp |ndt] nwuwywpagdwl W phpwhiwht nuuh  wugdwl
inpwdwpwuntpjwl inGpdhuutbpny:

o Unwgywd Jwptdwunhlywywl dnnbp nLunLduwuhnb
hwdwlwnaswiht ghinnigywt W dGpGUwjwywl nunigdwlu wnlw
hGunwgnunwywu nunnnipintbutph dheongnd, huswhupp G gpudnud
owwnhdw| dwluwwwnphh thuinpnwdp, wdpwwundwu nwngndp W
hinBpwwnhy nwuwywpgnudp® nGuwywl  wpryntupubpp  [puigling
wghphpdwywu quwhwuwnnwlutpny W wnwwnyt, TCC-
UnnGugnpdwt W ybpinwdnipjut ghpshpuaywqu:

e Unwownyti  hwgnpnwyuwl  (thnuywihl) — phpwhiwhl - nwuh
nuwuwywnpaduwl/hwinyuwgdwl wighphpdwyuwl dnintgnwdutn:

Uwnbuwununipju ghunwlwt unpnypep

e (3hpwhuwihu nwuh nwuwywpguwl/hwinyuguuwu huunph
dwpbtUwwnhlywywl dlwybpwyned, Uywnpwahn W dnnGuwynpnid: Mwpg
nGuntpdhUhuinhy nbwph epnwonieyntu W nusnud™ gpuid-inbuwywit
dbnnutinny:

e Bhpwhiwhl  nwuh  nuuwywpgdwl - fiunph - ng-ntintipdhuhuinhy
ntuwph (nLdUWU wignphpd™ ogquiwagnpstiny Ynnuunpnzdwis: wghyihy
gnuwdltn, quuhwindws  pdoywywl induiutinh ynw:  UignphpUp
Yurnignud £ Uh puilih 2Gnpnhg pwnyuiguws Ynndunpnagwis: wighyihy
ghwd, wunthGwnle  thunpnd £ phpwpu-Unpdw]  nwupu
hwdwuwwwnwupuwlnn quaque wnwunn Jwpdwaghylu  dwlwwwphp:
Uwhdwuynwd £ windtiph $ncuyghw W punniltih Eyphuinpy $nLuyghw
dwuwuwwnhh  owwnhdwinipintt unnwuwint  hwdwp:  Spgnwd £
thunnpdwt - wprynlupltiph  YluunGpwihu - guwhwndwu  JGpnn W
serverless Uhwinbgnd hhdjwd backend W wdwwhUu  huwoydwu
winbhuuninghwutinh ypw™ hwytyw) guwhwwinnidtph hwdwin:

e Ugnphpd, npp nwuntgwunwd £ Deep Q Networks (DQN) W Value
lteration wdpwwunUwl nunigdwl  wignphpUdutpp®  pwquwtpun
ghwdlbipnnwd hwulbine phpwhu-unpuu nwuhu hwdwwwinwupuwunn
qugwpehl®  phpwiwhl - nwuh  nuuwywpguwl — hiunph - ng-
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nGwntpdhupunnhy  nbwp (NWBENL Lwwwnwyny:  Upryndupnid,
ywnnigynd £ pd2yuiyuil tnduiubph Jypw hhdudwsd pwquwotpn
gpwd, npdnud £ Juwwygywsnipjwl W wdpwwlundwl nrunigdwiu
Uhowdwinh  Ywnnigdwl  wnpwdwpwUnipintup,  huswtu  Uwiley,
w@hphpUuutph  nwngwunwd  pwaduwptinn gpwdubpnud,  husp
pnywwnpnd £ hwulb] phpwhu-Uunpdw] nwupb - wdbu  26pnnud
(thnunLd) Ywnwnting hwpnhpnwywu ghpdnnnipjnlultn:

o Unnbutph dhwynpduwl (model ensemble) ypw hhdujwsd huinbpwuinpy
UG nnlwyhu guugh Swpunwnpwwbnneent® Yuquywd Gptip wnwubdhu
UGjpnuwyhu gwugbinhg, npnup Ywnpnnwunwd BU |nst| phpwuwhu/ny
rhnwhiwihl nwutiph nwuwyuwpgdw punhp (Gpyniwyul nbwp),
npwtu TCC pulnph punjwjund” uwnwnbiny Gptp gwugtbph dhwgjw
owinhdwuwgnid oqunwghnsdtinyg pd2 iyl indjuifutp:

¢ Ughphpdwywl pupwgwywnpg, npp ynupunwuph Udwlnipjwl ypw
hhuujwd Uninbgdwl dhpngny thnpanwd £ pwnpbuyt| gpwnhtUwnh
wlydwlu nwnigwunwlp puwquunwu  |hghuinhy nGapGupwnid; wju
thnpdwpyyt| £ nip tnwpptip pd2yuywt indjuiutiph hwywpwsdniutph
Unw:

MoaenupoBaHUue 3agay AMHAMUYECKOTO pacno3HaBaHUS C
MCnonb3oBaHMEM rpacpoBbIX anropuTMOB U METOAOB MaLMHHOTO
obyueHus

Pestome

B cdepe peKkypcMBHO-UTEpaLMOHHBIX — anroputMoB  knaccudukaymu
BO3HWKaeT npakTudeckas HeobxoguMocTb B paspaboTke HOBbIX METOAOB,
cnocobHbIX MocrefoBaTenbHO knaccuduumpoBaTb 06bekTbl K 3agaHHbIM
knaccaM. B pamkax pgaHHOW paboTbl uMccnegyeTcs  AMHaMUYecKoe
pacrnosHaBaHWe OObEKTOB C WHTeprpeTauveid Ha MejWULMHCKMX Habopax
JaHHbIX, cocpefoTaynBasicb Ha npobneme knaccuduKkauum LeneBbiX
knaccoe (TCC). 3To npeanonaraeT knaccudpukauuro/pacnpeeneHne
areHToB (obbekTOB) B knacc  "UeneBoW-HOpManbHBIR" Yyepes
nocriegoBaTenbHble Wwarn. Pabota HauuHaeTcs c Teopuu rpacgpoB U
OWCKPETHOW OMTUMM3auuW, 3aTeM Mbl MofydaeM 3KCnepuMeHTanbHble
pesynsTaTel ¢ MOMOLLbIO MpoLeayp MNocrefoBaTeflsHOr0 MOAeNnupoBaHus,
TaK1X Kak nouck rpadpos 1 obyyeHue ¢ nogkpenseHneM. HecMoTps Ha To, YTo
JuccepTauua  COAEPXUT  3HaUUTENbHble  KOMMOHEHTbl  06paboTkn U
MOAENUPOBaHUA MeAULMHCKUX faHHbIX, Mbl yAenseM 3Ha4uTenbHo Gonblue
BHUMaHWA anropuTMUYECKUM peanusauuaM, YTO MOXET NO3BOMUTb
“cnonb3oBaTh 3TU NoAXOoALI U AN Apyrux obnacrtei.
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HaHHas 3agayva uMeeT Hauborbluee CXOLCTBO C 0BNacTbio UccrefoBaHWi
nepapxmdeckoro oby4eHus c nogkpennerHnem (HRL), koTopasa obecneunBaet
NoAXOoA «pasfensii u BnacTByit», abecTparupys crioxHsle npobrnemMel Ha Gonee
Menkue nogsagadn. HRL neiTaetca goctudb KOMMNO3WLMOHHOCTY, MCNOSMb3YS
JBa OCHOBHbIX MexaHu3Ma: BpeMeHHble abcTpakumn w  abcTpakuuu
COCTOSHWA. B gucceprauum mbl CTaBUM KOMMO3WMLMOHHOCTb M CTaguiHoe
MOAENUPOBaHNE Ha OCHOBE HalUMX 3KCNepuMeHToB, 4ToObl paspaboTtaTtb
anropuTMUYEcKUidA M NPOrpaMMHbIA  UHCTPYMEHTapuii  ANsA  pelleHus
noctaeneHHol 3agadn TCC. Wcnonbsysa MefuuUMHCKME Habopbl AaHHbLIX,
npobriema uccrnefyeTca He TOMbKO C TOYKM 3peHuss obydyeHus ¢
NofKpenneHneM, HO W C TOYKM 3PEHWs MOCTpoeHus rpadoB U rnoucka
onTUMarnbeHoro Nyt B rpade, aHcambreBol UTepaLMOHHON KnaccudmkaLm
¥ KOMOMHATOPHON OMTMMU3ALMK, UCNOMb3YS METOZOMOrMU MHPOPMATUKK 1
MalUMHHOro oby4eHus, rae NpegnararTca anroputMbl, garmoLue Banugaumm
¥ nonyvaroLime npuknagHele pesynsrathbl.

Lenb aucceprauuu

¢ CdhopmynupoBatb MaremaTuyeckoe onucaHwe “ aHanus
nocregoBaTenbHO Krnaccudukauun/pacnpegeneHms LenesbIxX
KIaccoB W NPeAnoXuTb MaremMaTuyecKyto Mogerb, CNOCOGHYIO pellnTb
3Ty 3ajady C TOYKM 3peHUs knaccudukalum 1 NOrMKW nepexoja B
LieneBou Knacc.

¢ WccneposaTb NofyYeHHyto MaTeMaTU4ecKyto Mogenb c
CYLLECTBYIOLUMMI  HanpasneHusaMW uccrefoBaHuWd B obnactu
MHPOPMATUKN M MalUMHHOrO OBy4YeHWUs, TakMMKU Kak MOUCK MyTeil B
rpadax, obyyeHune ¢ NogKpeneHMeM u ntTepaTuBHas Knaccudukaums,
ONS QOMOMHEHUS TEOpeTWYEeCKUX pe3ynesraToB anropuTMUYECKON
OLEHKOW W  CcO3A4aHus  MNpakTUYeCcKOro  MHCTpyMeHTapus  Ans
MoZenupoBaHus u aHanusa TCC.

o [pednoXuTe anropuTMUYeckMe MOAXOAbI K MOcrefoBaTenbHOM
(noaTanHon) knaccudukauuu/pacnpefeneHuto LenesblX Knaccos.

HayuyHbIli BKNag B guccepraumio

¢ MaTtematnyeckoe opMynupoBaHue, onucaHue W MogenupoBaHue
3agauu pacnpegeneHus LeneBblX  KIaccos. MpocTeiLunii
JEeTepMUHMPOBAHHLIA cryyYall 3agaqn aHanu3upyeTcs U peluaeTcs ¢
MCMorb30BaHWEM TEOPETUKO-TPadpoBbIX anropuUTMUYECKUX NMOLXOL 0B.

e AnropuTt™ pelleHus 3agadn TCC ana HegeTepMUHUPOBAHHOMO criyyas
C MCNonb3oBaHWEM HarmpaBfeHHbIX auuknudeckux rpadgos (DAG),
OLeHMBaeMbIX Ha MeguuUMHCKMX Habopax AaHHbIX. ANropUTM
dopmMupyeT rpynny goctyna Kk 6azam AaHHbIX C HECKOMBKUMMW CIOSIMMU,

21



a 3aTeM MWeT Kpatyaiwuii nyTb K BepLiMHe, COOTBETCTBYOLEl
LeneBoMy HopMasbHOMY knaccy. O6ecneumBaetcs  UYHKLMS
CTOMMOCTW U AOoNyCcTMMas 3BpucTUyeckas yHKUUS 415 ONTUMasbHOro
nyt. MeToAuKa  OLEHKM  pe3ynbTaToB  MOWCKA Ha  OCHOBe
Knactepmsaumm n 6eccepBepHbIil MOAX0A4, OCHOBAHHbIA Ha 6G3keHg u
obnayHbIX MeTogax aAns AasibHelwel OLUEeHKN.

AnropuTm, obyyarolmii anroputMbl 06yyeHusi ¢ nogkpenneHuem Deep
Q Networks (DQN) wu Value lIteration gns [OCTUXEHWS BEPLUMHBI,
COOTBETCTBYHOLLEN Le/eBOMY HOPMasibHOMY Kfaccy B MHOFOC/I0MHOM
rpadhoBOM MpeACTaB/eHUM [ANS1  pelleHust HeeTepMUHMPOBAHHOIO
cnyyas 3ajaum  knaccudpmkauum LeneBoro knacca. B pesynbtarte
co34aeTcsl MHOFOC/OMHbIA rpad Ha npumepe MeauUUHCKMX HabopoB
[aHHbIX, (hOpMMpOBaHMEe NPOCTPAHCTBA COCTOSIHWIA C UCMO/b30BaHNEM
CBSI3HOCTM U 06YyYeHUs C MNOAKPeNnsieHneM, a Takke anroputMoB
06yuyeHnss ¢ MOoAKPENSIEHWEM, CMOCOGHbIX 06yyaTbCA Ha TakoMm
npefAcTaB/ieHnM U BbINOMHATL NOCNefoBaTeNbHOCTb AeNCTBUIA  Ha
pasHbix 3Tanax (Cnosix) ANns [AOCTUXEHWUSI LeneBoro HopMasibHOro
Knacca.

ApXuUTeKTypa uTepauuoHHOIM HEWPOHHOI CeTM Ha OCHOBe aHcambns,
coCToSsILLan U3 Tpex OTAEesbHbIX CeTell, CNoCoBHbIX KnaccutuumpoBatb
ueneBble/HeueneBble Knaccbl (6WHapHbIA  cnyyall) B KayecTBe
pacwupeHna 3agaunm TCC, «KoTopasi BbIMOMIHAET COBMECTHYHO
onTMMM3aLno Tpex ceTell ¢ MegUUUHCKUMUN JaHHbIMU.
AnroputMmuyeckas  npoueaypa, HanpaBfieHHas  Ha  ynydlleHue
ONTUMU3aALUN TPAAMEHTHOrO Crycka NyTem npeAocTaB/ieHns noaxoaa,
OCHOBAHHOTO Ha KOCMHYCHOM nopo6uu, pans  MaclitabupoBaHus
CKOpOCTW 06y4eHUsi B npouecce OGHOBMEHMS TPaAUEHTHOTO crycka B
MHOrOK/1aCcCOBOI fiorucTuyeckoii perpeccun. Mogaxosd npoTecTUpoBaH
Ha BOCbMW MeAULUMHCKUX Habopax faHHbIX.
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