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Overview

Relevance of the topic.

The trigonometric system is the first orthogonal systems of functions. It has played an important role
in various branches of mathematics (harmonic analysis, number theory, mathematical physics, etc.). It
is well known that the Fourier series of a continuous function can be divergent (see e.g. [2]). In 1910 A.
Haar [41] constructed an orthonormal system such that the Fourier series of any continuous function f
with respect to that system uniformly converges to f. Nevertheless, the Haar system does not form a basis
for C10, 1], since its functions are discontinuous. The first example of an orthonormal basis for C0, 1]
was constructed by Ph. Franklin in 1928 ([17]). The Franklin system is a complete orthonormal system of
continuous, piecewise linear functions (with dyadic knots). It is obtained by applying the Gram-Schmidt
orthogonalization process to the Faber-Schauder system.

The systematic investigations of the Franklin system have been started by Z. Ciesielski with his
remarkable papers [11] and [12]. Since then, the Franklin system has been studied by many authors
from different perspectives. The basic properties of this system, including exponential estimates for the
Franklin functions and L”-stability on dyadic blocks, have been obtained by Z. Ciesielski in [11] and
[12]. These properties turned out to be an important tool in further investigations of the Franklin system.
It is known that this system is a basis in C[0, 1] and L? for 1 < p < oo. The unconditionality of the
Franklin system in L”, 1 < p < oo, has been proved by S. V. Bochkarev in [4]. Moreover, the Franklin
system is an unconditional basis in all reflexive Orlicz spaces ([3]). The existence of an unconditional
basis in H'! has been first proved by B. Maurey [42], but the proof was non-constructive. The first
explicit construction of an unconditional basis in H! is due to L. Carleson [8]. Then, P. Wojtaszczyk has
obtained a characterization of the BMO space in terms of the coefficients of a function in the Franklin
system and proved that the Franklin system is an unconditional basis in the real Hardy space H! [56].
The unconditionality of the Franklin system in real Hardy spaces H?,1/2 < p < 1, has been obtained
by P. Sj6lin and J. Stromberg ([52]).

The Franklin system has had important applications in various problems of analysis. In particular, the
constructions of bases in spaces C'*(1?) (see [13], [51]) and A(D) (see [3]) are based on this system. Here
C1(I?) is the space of all continuously-differentiable functions f(x,y) on the square I = [0, 1] x [0, 1]
with the norm

of of

Ox oy’

and A(D) denotes the space of analytic functions on the open disc D = {z : |z| < 1} that are continu-
ously extendable up to the boundary. The norm of a function f € A(D) is defined by

[fI] = max [ f(z)].

|z]<1

”fH :maX‘f(x7y)’+maX -+ max

The questions of existence of bases in C'(I%) and A(D) were posed by S. Banach [1].

Both Franklin and Haar are special cases of the orthogonal spline systems. Spline functions are
piecewise polynomial functions. These functions are mostly used in problems that include some kind of
interpolation. Splines are defined by a knot sequence and a degree, which is the highest degree of the
polynomial that can be used in each segment of the spline. In the literature instead of degree we encounter
the term order. It is the degree plus one. For example, Franklin system, which is an orthonormal system of
spline functions, has order k£ = 2. After thorough examination of Franklin and Haar systems, researchers
started to gradually generalize the results to the orthonormal spline systems of arbitrary order k. A
celebrated result of A. Shadrin [50] states that if a sequence of knots is dense in [0, 1], then the orthogonal
projection operator onto the space of polynomial splines of order % is bounded on L>°[0, 1] by a constant
that depends only on the spline order k. As a consequence, non-periodic orthonormal spline system is



a Schauder basis in L?[0,1], 1 < p < oo and in the space of continuous functions C[0, 1]. Moreover,
Z. Ciesielski [14] obtained several consequences of Shadrin’s result, one of them being an estimate for
the inverse of the B-spline Gram matrix. Using this estimate, G. G. Gevorkyan and A. Kamont [28]
extended a part of their result from [27] to orthonormal spline systems of arbitrary order and obtained
a characterization of knot sequences for which the corresponding orthonormal spline system of order
k is a basis in H'[0,1]. Further extension required more precise estimates for the inverse of B-spline
Gram matrices, of the type known for the piecewise linear case. Such estimates were obtained by M.
Passenbrunner and A. Yu. Shadrin [44]. Using these estimates, M. Passenbrunner [43] proved that for
each dense sequence of knots, the corresponding orthonormal spline system of order £ is an unconditional
basis in LP[0,1], 1 < p < oo.

The primary focus of this thesis is to extend the existing results concerning basis properties of peri-
odic orthonormal spline systems in the space H*(T). Before discussing these extensions, we mention the
main results related to this topic. The periodic analogue of Shadrin’s theorem is proved in [45]. In case of
dyadic knots, J. Domsta [16] obtained exponential decay for the inverse of the Gram matrix of periodic
B-splines, which was used to prove the unconditionality of the periodic orthonormal spline systems with
dyadic knots in L” for 1 < p < oo. In [38] it was proved that for any admissible point sequence the corre-
sponding periodic Franklin system forms an unconditional basis in L”[0, 1], 1 < p < oo. K. Keryan and
M. Passenbrunner [39] obtained an important estimate for general periodic orthonormal spline functions.
By combining the estimate with the methods developed in [26], they were able to derive the uncondition-
ality of periodic orthonormal spline systems in LP(T), 1 < p < oo. Another contribution to the study of
periodic orthonormal spline systems was made by M. P. Poghosyan and K. A. Keryan in [49], where they
provided a geometric characterization of knot sequences for which the corresponding general periodic
Franklin systems is a basis or unconditional basis in H!(T).

In this thesis basis and unconditional basis properties are considered for orthonormal spline systems
of arbitrary order k corresponding to “regular” knots in the space of H'!(T). A simple case of orthonormal
spline system is Franklin system. It is orthonormal spline systems of order £ = 2 corresponding to dyadic
sequence of knots.

Another direction we pursued in our research was the study of uniqueness properties of multiple
Franklin series. Cantor [7] (see also [2, Ch. 1, §70]) proved that the empty set is a U-set for the trigono-
metric system. This theorem marked the beginning of the study of uniqueness of orthogonal series. One
of the important generalizations of Cantor’s theorem is Vallee-Poussin’s theorem [55] (see also [2, Ch.
14, § 4]): any countable set is a IV P-set for a trigonometric system. Research on the uniqueness of the
trigonometric series continues to this day (see [40]).

The study of the uniqueness of series for the Haar, Walsh systems and their generalizations began
with the works [34], [35], [46] and [53] and continues to this day (see [30], [31], [47], and [48]).

The study of U-sets for the Franklin systems began recently with the works [20], [21]. In [22],
theorems on V' P-sets of the Franklin system were proved. In particular, The empty set for the Franklin
system is a V' P set.

In this thesis, we focus on proving theorems regarding V' P-sets of multiple Franklin series.

The aim and objectives of the thesis. The main purpose of the present thesis is to study the basis
properties of orthonormal spline systems in H'(T). The following are the main goals:

1. To characterize the knot sequences for which the corresponding orthonormal spline system of ar-
bitrary order & is a basis in H'(T).

2. To demonstrate that, under certain regularity conditions on the knot sequences corresponding to an
orthonormal spline system of arbitrary order k, the system serves as an unconditional basis in the
Hardy atomic space on the torus T.



3. To establish that it is necessary for the knot sequences to satisfy certain regularity conditions for
the corresponding orthonormal spline system of arbitrary order £ to form an unconditional basis in
the Hardy atomic space on the torus T.

4. To study of uniqueness sets for multiple Franklin systems by considering convergence in the sense
of Pringsheim.

Research methods. In the thesis the methods of real analysis, functional analysis, harmonic
analysis, and mathematical analysis are used.

Scientific novelty. All of the main results are new. The results are listed below:

1. If a k-admissible sequence of knots (s,,) satisfies k-regularity on the torus T with some parameter
~v > 1 then the corresponding periodic orthonormal spline system ( f,(Lk)) of the order k is basis

in H*(T). Conversely, If periodic orthonormal spline system ( f,ﬁ’“)) is a basis in H'(T) then the
corresponding sequence of knots satisfy k-regularity condition with some parameter v > 1.

2. The (k — 1)-regularity condition on a k-admissible sequence of knots (s,,) on T is sufficient for the
corresponding periodic orthonormal spline system ( fék)) to form an unconditional basis in H'(T).

3. Let (s,) be a k-admissible sequence of points on the torus T. If the corresponding periodic or-

thonormal spline system ( f,(Lk)) forms an unconditional basis in H!(T), then (s,,) satisfies the
(k — 1)-regularity condition on T for some parameter v > 1.

4. If the multiple Franklin series converge in the sense of Pringsheim to a finite integrable function,
except possibly on a certain sparse set, then the series is the Fourier-Franklin series of the limiting
function. Moreover, under certain technical condition and the convergence of the iterated limits of
the multiple Franklin series to an everywhere finite integrable function, the series is identified as
the Fourier-Franklin series of the limiting function.

Theoretical and practical value. All the results and methods represent theoretical value. The meth-
ods are applied and can be extended to be further applied in theories of orthogonal series and harmonic
analysis.

It is proved that under some regularity condition on the knot sequences, the corresponding periodic
orthonormal spline systems are basis or unconditional basis in H!(T).

Additionally, we prove that sparse sets, which are defined as Cartesian product of measure zero sets,
are V' P-sets for multiple Franklin system.

Publications. The main results of the thesis have been published in 4 scientific articles. The list of
the articles is given at the end of the Synopsis.

The structure and the volume of the thesis. The thesis consists of introduction, 4 chapters, a con-
clusion and a list of references. The number of references is 60. The volume of the thesis is 76 pages.

The Main Content of the Thesis

In Introduction we recall several results concerning the basis properties of different orthogonal sys-
tems in various spaces. Results on basis properties for series by Haar, Franklin or more generally or-
thonormal spline systems of arbitrary order have been obtained by S.-Y.A. Chang, L. Carleson, Z. Ciesiel-
ski, G. Gevorkyan, A. Kamont, K. Keryan, M. Passenbrunner, M. Poghosyan, P. Sj6lin, J.O. Stromberg,
P. Wojtaszczyk and others in the papers [8], [10], [28], [29], [49], [52], and [56].
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Next, we provide some background on the study of uniqueness sets with respect to various orthonor-
mal spline systems, including trigonometric, Haar, Walsh, and Franklin systems. This line of research
began with Cantor’s work on the trigonometric system [7], which was later generalized by Vallee-Poussin
[55]. Subsequent contributions to this field were made by researchers such as G. Gevorkyan, F. G. Haru-
tyunyan, G. Kozma, K. A. Navasardyan, A. Olevskii, M. B. Petrovskaya, M. G. Plotnikov, Yu. A.
Plotnikova, A. A. Talalyan and others. The following are relevant papers on this topic [30], [31], [34],
[35], [40], [46], [47], [48] and [53].

To formulate some of these results, let us begin by providing the key definitions.

Assume that & > 2 is an integer. Let 7 = (¢,)22, be a dense sequence of points in [0, 1] such that
each point occurs at most £ times. Moreover, define ¢, := 0 and ¢; := 1. Such point sequences are called
k-admissible. For n intherange —k+2 <n <1, let S be the space of polynomials of order n +k — 1
(or degree n+ k — 2) on the interval [O 1] and ( £ )n__ 1+2 b the collection of orthonormal polynomials
in L?[0, 1] such that the degree of ¥ isn + k — 2. Forn > 2, let T,, be the ordered sequence of points
consisting of the grid points (¢; )”+1 counting multiplicities and where the knots 0 and 1 have multiplicity
k,i.e., T, is of the form

E:(OZTn,—k:"':Tn,—l<Tn,0§

<-.-< Tan—1 < Tan = " = Tnntk—1 — 1)

In that case, we define S to be the space of polynomial splines of order k£ with grid points 7,,. For each
n > 2, the space S, (k) 1 has codlmensmn Lin S and, therefore, there exists a function fék) c S that is
orthonormal to the space S 1 See that this function f,(Lk) is unique up to sign. The system of functions

( ,(lk)) _ 4o 18 called orthonormal spline system of order & corresponding to the sequence (Z,,)52.
We define Hardy atomic space on the interval [0, 1]. A function a : [0, 1] — R is called an atom, if
either a = 1 or there exists an interval I' such that the following conditions are satisfied:

(1) suppa C T,
(i) flallo < T,
(iii) fo z)dr = [.a(z)de = 0.

Then, by definition, H'[0, 1] consists of all functions f that have the representation

oo
= cnan
n=1

for some atoms (a,,)52; and real scalars (¢,)°, such that Y >~ |c,| < oo. The space H' becomes a
Banach space under the norm

%)
11l = inf ) [eal,
n=1

where inf is taken over all atomic representations » _ ¢,a,, of f.

Now, we introduce regularity conditions for a sequence 7. Forn > 2, ¢/ < k and ¢ in the range
—¢ <i<mn-—1,wedefine D,(fz to be the interval [7, ;, 7, i) Let £ < k and (¢,,)32, be an ¢-admissible
point sequence. Then, this sequence is called /-regular with parameter v > 1 if

<\Dm+1|<le I, n>2 —(<i<n-2



The following is due to G. Gevorkyan and A. Kamont [28].

Theorem 0.0.1. ([28]) Let £ > 1 and let (¢,,) be a k-admissible sequence of knots in [0, 1] with the
corresponding orthonormal spline system ( fT(Lk)) of order k. Then, ( f,gk)) is a basis in H'[0, 1] if and only
if (¢,,) is k-regular with some parameter y > 1.

It is easy to see that (k — 1)-regularity implies k-regularity. Thus, imposing this stronger condition on
the knot sequence we get the unconditional basis property of orthonormal spline systems. The following
theorem was developed separately by two groups G. Gevorkyan, K. Keryan and M. Passenbrunner, A.
Kamont.

Theorem 0.0.2. ([29]) Let (¢,,) be a k-admissible sequence of points. Then, the corresponding or-
thonormal spline system ( fék)) is an unconditional basis in H'[0, 1] if and only if (¢,,) satisfies the (k—1)-
regularity condition with some parameter v > 1.

The only result on periodic orthonormal spline systems in H'(T) is given in [49]. The authors con-
sidered the special case k = 2, i.e., Franklin system with arbitrary knots. They gave a special geometric
characterization of the knots for which the corresponding Franklin system has basis properties. Before
stating the result, a few definitions are in order. Let & > 2 be an integer. Let (s,)5°, be a k admissible
point sequence on the torus T, i.e., a dense sequence of points on the torus T such that each point occurs
at most £ times.

Forn > k, we define S, to be the space of polynomial splines of order k with grid points (s;)}_, € T.
For each n > k + 1, the space Sn_l has codimension 1 in Sn and, therefore, there exists a function

R — fn € S, with I anz = 1 that is orthogonal to the space S,._1. See that this function fn is unique
up to sign. In addition, let (f,)_, be an orthonormal basis for S;. The system of functions ( fi )n L 18
called periodic orthonormal sphne system of order k corresponding to the sequence (s,,)> ;.

Now we define the atomic Hardy space on T. a : T — R is called a periodic atom, if either a = 1 or
there exists a periodic interval I' C T such that the following conditions are satisfied:

(1) suppa C T,
(i) flallzee(n < 17,
(iil) [pa(z)dz = [.a(z)dz = 0.
Now, H'(T) is the family of all those f functions that has representation
f=) cutn
n=1

for some periodic atoms (a,,)S ; and real scalars (¢, )%, such that >°7 | |¢,| < oo. The space H*(T)
becomes a Banach space under the norm

£l cry = inf > feal,
n=1

where inf is taken over all (periodic) atomic representations » | ¢, a, of f. Now, we introduce regularity
conditions on the torus T for sequence (sn)n 1

Assume thatn > k + 1. Let (0;)72, ! be the ordered sequence of knot points consisting of (s;)" _,on
T canonically identified with [0, 1):

7:1 = (O < On,0 < On,1 <---< On,n—2 < Onn—1 < 1)



For integer ¢ < k and ¢ € Ny, we define Téﬁ-) := [0n.isOnite) C T interval. Here we observe index i
periodically, i.e., we use the notation of periodic extension of the sequence (aj)?:—&, 1e., Oy =7 +0;
forj € {0,...,n — 1} and r € Z and in the subindices of the B-spline functions, we take the indices
modulo n.

Let ¢ < k and (s,)52, be an /-admissible point sequence on the torus T. Then, this sequence is called
(-regular on the torus T with parameter v > 1 if

|T7§ZZ) | < |7® () .

T—‘Tn,i+1’§7‘Tn,i" n>{0+1,1€N,.

Theorem 0.0.3. ([49]) Let (s,,) be a 2-admissible sequence of knots on T with the corresponding
periodic Franklin system ( ﬁ(lz))nzl. Then, ( f,(f))nzl is a basis in H'(T) if and only if (s,,) is 2-regular
on the torus with some parameter v > 1.

Theorem 0.0.4. ([49]) Let (s,,) be a 2-admissible sequence of knots on T with the corresponding
periodic Franklin system ( ﬁ?))nzl. Then, ( ﬁ(f))nzl is an unconditional basis in H'(T) if and only if
(sy) is 1-regular on the torus with some parameter y > 1.

The paper [39] was of considerable importance to our work, offering a thorough analysis of periodic
orthonormal spline functions. Several key properties of these functions were pivotal in deriving our main
results.

Theorem 0.0.5. ([39]) Let £ € N and (s,,),>1 be an admissible sequence of knots in T. Then the
corresponding periodic orthonormal spline system of order k is an unconditional basis in L?(T) for every
1 <p<oo.

In Chapter 1 we show that k-regularity of knot sequences is a necessary and sufficient condition for
corresponding orthonormal spline system to be basis in H'(T), i.e., we get a generalization of Theorem
0.0.3.

First, we give the main result of Chapter 1, which is proven in [2*].

Theorem 1.2.1. Let £ > 1 and let (s,,) be a k-admissible sequence of knots in T with the correspond-
ing periodic orthonormal spline system ( A,sk)) of the order k. Then, ( ﬁS’“)) is a basis in H!(T) if and only
if (s,,) is k-regular on the torus with some parameter v > 1.

We see that the main theorem in the chapter is proven by establishing two propositions that provide
bounds for the H'(T) norm of the orthogonal projection operators p®.

Since the sequence of knots (s,,)° ; is dense on the torus T, the linear span of the functions { f,S’“), n >
1} is linearly dense in C/(T), which implies its linear density in H*(T). Therefore, { 9 p > 1} isa
basis in H'(T) if and only if the orthogonal projection operators P are uniformly bounded in H*(T),
i.e., there is a constant C' = C'(T'), that only depends on the admissible knot sequence 7 = (s,,)5° , such
that

1B mamy = 1B+ HY(T) = HY(T)|| < C(T). (1)

We show that (1) is equivalent to k-regularity of 7. This is an immediate consequence of the Propo-
sitions 1.2.2. and 1.2.3., which give estimates of the norms P from below and from above, respectively.

~

Proposition 1.2.2. Let 7, = (0 < 09 <0y < --- < 0,2 < 0,1 < 1) be a sequence of knots on
the torus T of multiplicities at most k. Let

T(k-)‘ |T(k{) |

_ (k) .__ | n,1 ni+1l . B

M = M, = max{ ® T ® 0<71<n 1}.
‘ n,i+1 ’ n,i’

Then there is a constant Cj, > 0, depending only on k, such that
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~

Proposition 1.2.3. Let 7, = (0 <09 <07 < --- < 0,2 < 0,1 < 1) be a sequence of knots on
the torus T of multiplicities at most k. Let v be such that

(k) |

—= < T8 <AITR) n>k+1,ieN,.
Then there is a constant Cj, , > 0 depending only on k and +, such that

Hpék)HHl(T) < Gy

In order to prove Proposition 1.2.2 we needed the periodic version of the claim used in [28] (cf. page
7, estimate (3.4)).

Proposition 1.4.1. Define ®(z) := max(0,1/2 — |z/4|) and ®.(z) = 1®(2), for z € [0,1]. Then,
there is a constant C' > 0 such that

1

| flleroa = CNf ooy, where  f*(z) = su%)\ O (x —t)f(t)dt].
€ 0
Using this proposition we prove a key Lemma used in the proof of Proposition 1.2.2.

Lemma 1.4.2. Define the 1-periodic functions () := max(0,1/2 — |2/4|) and &, (z) = :
for x € T. Then, for some constant ¢ > 0 the following holds,

o
—
|—
~—

~

[l zrery = el | zrery,  where  f™(z) = Sl>113| T‘Pe(l" —t) f(t)dt].

In Chapter 2 we show that a stronger condition on knot sequences leads to unconditional basis
property of orthonormal spline systems - a property that is stronger than the basis property discussed in
the previous chapter. This is a generalization of the sufficiency part of Theorem 0.0.4.

The main result of the chapter, established in [3*], is as follows.

Theorem 2.0.1. Let (s,,) be a k-admissible sequence of points on the torus T. If (s,,) satisfies the
(k — 1)-regularity condition on the torus T with some parameter v > 1, then the corresponding periodic
orthonormal spline system ( f,&’“)) is an unconditional basis in H!(T).

The proof of the result above requires using Theorem 1.2.1 and three equivalent conditions which we
present down below.

Let N (k) be a positive integer only depending on spline order £ (this number is specified in the proof
of one of the propositions) and let (a,),>n(x) be a sequence of coefficients , define

S::( i aiﬁf)m and M = sup‘ i iy

n=N (k) n=N (k)

If f € L(T), we denote by Sf and M f the functions S and M corresponding to the coefficient
sequence a,, = (f, f.), respectively. Consider the following conditions:

(4) SeLXT),
(B) M € L\(T),

(C) There exists a function f € H'(T) such that a,, = (f, f,.).



We prove that under certain regularity conditions on the knot sequence (s,,)> ; the conditions (A)-(C)

are equivalent.
Now we discuss the relations between these three conditions. The following diagram illustrates the
regularity conditions that must be imposed on the knot sequence (s,,)2; for the implications to hold.

=

\
7

Proposition 2.5.2
_ (k=1)reg =[S FI S Il 1y —

) (B)

ya

N

k-reg. :>||fHH1(1r)§k,'y”]\/[f||1»
Proposition 2.5.3.

Let us recall that in case of non-periodic orthonormal spline systems with dyadic knots, the relations
(and equivalences) of these conditions have been studied by several authors, see e.g. [52, 10, 18]. For
general Franklin systems corresponding to arbitrary sequences of knots, the relations of these conditions
were discussed in [27] (and earlier in [25], also in H? spaces, for p < 1, but for a restricted class of
point sequences). We follow the approach in [29] and adapt it to the case of periodic orthonormal spline

systems of the order k.

The following propositions are used to prove the implications in the diagram above.

Proposition 2.5.1. ((A) = (B)) Let (s,,) be a k-admissible sequence of knots on the torus T and let
(a,) be a sequence of coefficients such that S € L'(T). Then, M € L'(T) and

HMHLl(T) Sk ||SHL1(’J1‘)-

Proposition 2.5.2. ((C) = (A)) Let (s,) be a k-admissible point sequence on the torus T that
satisfies the (k — 1)-regularity condition on the torus with parameter v > 1. Then there exists a constant
C'~ depending only on k and «y such that for each atom ¢,

1S Lrry < Chy-
Consequently, if f € H'(T), then
1S fllrery < Crnll fllaren)-

Proposition 2.5.3. ((B) = (C)) Let (s,,) be a k-admissible sequence of knots on the torus T satis-
fying the k-regularity condition with parameter v > 1 and let (a,).>n (k) be a sequence of coefficients
such that M € L'(T). Then, there exists a function f € H*(T) with a, = (f, f,) for each n > N (k).
Moreover, we have the inequality

1l zy Sk 1M Sl zrm)-
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In Chapter 3 we see that (k — 1)-regularity is a necessary condition for ( f,&’“))go:l to be an uncondi-
tional basis in H'(T). The main result of this chapter, which is proved in [4*], is the following.

Theorem 3.0.1. Let (s,,) be a k-admissible sequence of points on the torus T. If the corresponding
periodic orthonormal spline system ( ﬁ(Lk)) is an unconditional basis in H'(T), then (s,,) satisfies the
(k — 1)-regularity condition on the torus T with some parameter v > 1.

On the other hand, the main result of Chapter 2 gives a sufficient condition for ( A,(lk))(”:1 to be an
unconditional basis in H'(T). Thus, combining these two theorems we get the following corollary.

Corollary 3.0.2. Let (s,) be a k-admissible sequence of points on the torus T. Then, the corre-
sponding periodic orthonormal spline system ( ﬁS’“)) is an unconditional basis in H'(T) if and only if (s,,)
satisfies the (k — 1)-regularity condition on the torus T with some parameter y > 1.

See that Corollary 3.0.2 is a generalization of Theorem 0.0.4.

For the proof of Theorem 3.0.1, we needed the following propositions.

Let (s,)°, be a k-admissible sequence of knots on the torus T with the corresponding periodic
orthonormal spline system ( fn)nZl- For a sequence of coefficients (ay,),>1, let

S = (i aifi) 1/2.
n=1

~

If f € L'(T), we denote by S f the function S corresponding to the coefficient sequence a,, = (f, f,.).
The following proposition is a consequence of Khinchin’s inequality.

Proposition 3.3.1. Let (s,,) be a k-admissible sequence of knots on the torus T with the correspond-
ing periodic orthonormal spline system (f,) and let (a,) be a sequence of coefficients. If the series
S°°° | an f, converges unconditionally in L*(T), then S € L'(T). Moreover,

LY(T)"
€

ISl S sup [|D enantn
e{-1,132 5

Proposition 3.3.2. Let (s,,) be a k-admissible sequence of knots satisfying the k-regularity condition
with parameter v > 1 on the torus T, yet it does not satisfy any (k£ — 1)-regularity condition. Then

sup || sup |an (@) ful | Li(r) = oo,

where sup is taken over all periodic atoms ¢ and a,,(¢) := (¢, fy,).

For the proof of Proposition 3.2.2 we need the following technical lemma.

Lemma 3.3.3. Let (s,,) be a k-admissible sequence of knots that satisfies the k-regularity condition
on the torus T with parameter v > 1, but does not satisfy any (k£ — 1)-regularity condition. Let ¢ be an
arbitrary positive integer. Then, for all A > 2, there exists a finite increasing sequence (nj)g;é of length

¢ such that if 0, ; is the new point in 7;]. that is not present in ﬁj_l and
Aj = [Un.wij—k’an.fvi.f—l)? Lj:= [Unjvij—hanjvij)’ Rj = [Unmj’gnjviﬁl)?
we have for all indices ¢, j intherange 0 < i < j </ —1
1. RN R; =0,
2. A=A,
3.2y = DIL| > |[on, 4y —h—1, Onyiy il > B2,

4. |R;| < (2v = 1)[L;],

11



5. 11 <2(v + Dk - Ry,
6. min(|L;], |R;[) = AJA].

In Introduction we also give definitions relevant to Chapter 4. Recall the Franklin system. Let n =
2¢ +v,where p =0,1,2,...,1 <v < 2% Let

=r for 2v < i < n.

{# for 0 <7 < 2v,
Sn,i = :

n

Denote by S,, the space of continuous and piecewise linear functions with nodes {s,,;}._,, i.e., the func-
tion f € S,, if f € C0, 1] and is linear on each interval [s,,;_1, S,;],7 = 1,2,...,n. Itis easy to see
that dimS,, = n + 1 and the set {s,,;}, is obtained by adding the point s,, 2,1 to the set {s,_1,;}7—".
Therefore, S,,_; C S,, and its codimension is equal to 1. Therefore, there exists a unique function f,, € S,,
such that f,, is orthogonal to S,,_; in L*[0,1], || .||, = 1 and f,, (85,20-1) > 0. Setting

folx)=1, fi(z) =V32x—1), z€][0,1],

we obtain the orthonormal system { f,,(z)},_,, which was equivalently defined by Franklin in [17].
We say that E is a V P-set for the system {¢,, } -~ if from

Y anpu(z) = f(z), z¢F,
n=0
where f is an everywhere finite integrable function, it follows that Y >° , a,,,(z) is the Fourier series
of the function f.
In [22], theorems on V P-sets of the Franklin system were proved.
Theorem 0.0.6. ([22]) The empty set is a V' P-set for the Franklin system.
Theorem 0.0.6 follows from Theorem 0.0.7, also proved in [22].
Let

S tnfula) @
n=0

be a Franklin series.
Theorem 0.0.7. ([22]) If the series (2) converges in measure to an integrable function f and the
following holds for any x

sup < 00,

n

n
a [ ()
k=0
then the series (2) is the Fourier-Franklin series of the function f.
In Chapter 4 we recall some well-known facts about the Franklin system, introducing key definitions,
and formulating the main results of the chapter. We also present several lemmas that are used to prove

the main results. The main results of this chapter are established in [1%*].
Let us denote by {f,(x)},cne the k-fold Franklin system on [0, 1]%, i.e.,

fn(X) :fm (I1>fnk (Ik)a nENka X € [Ou 1]k’

where N denotes the set of non-negative integers.

12



We consider multiple Franklin series

> anfu(x), x€10,1)%, 3)

neNk

with rectangular partial sums

Sn(x) =) anfu(x), (4)

n<N
where the notation n < N means thatn; < N;,i=1,...,k.

A multiple number sequence Sy, N € N, is said to be Pringsheim (or rectangle) convergent to A,
written as limy_,o Sy = A, if

Ve >0 dMye N, when lrlngkNZ > My, then |Sy—A|<e.

Definition 4.1.1. We say that a set £/ C [0, 1)* is sparse in [0, 1]* if

E CEy, where FEy=F; X FEyx---xE, with mes(E;)=0, i=1,...,k,

where mes(A) is the Lebesgue measure of the set A.
The main results of this chapter are Theorems 4.1.2 and 4.1.3.

Theorem 4.1.2. Let E be a sparse set in [0, 1]* and the series (3) with partial sums (4) satisfies the
conditions

sup Zanfn(x) <00, X¢E, (5)
N ln<N
and there exists the iterated limit
N N
Jim - Nggnm; Jus (1) - Zoaf () = f(x), x€0,1)%, (©)

where f is an everywhere finite integrable function. Then the series (3) is the Fourier-Franklin series of
the function f.

Theorem 4.1.3. Let E be a sparse set in [0, 1]* and let the series (3) with partial sums (4) satisfy
lim » " anfa(x) = f(x), x¢FE, (7)

where f is an everywhere finite integrable function. Then the series (3) is the Fourier-Franklin series of
f
Obviously, any countable set is sparse in [0, 1]*. Therefore, Theorem 4.1.3 yields the following.
Theorem 4.1.4. Any countable set is a V' P-set for multiple Franklin series converging in the sense
of Pringsheim.

13
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3ak/oueHue

Juccepranyst COCTOUT U3 BBEICHUS U YETBIPEX [NIaB.

IlepBas miaBa NOCBALIEHAa HM3Y4YEHUIO HEOOXOAMMBIX M JOCTaTOYHBIX YCJIOBUM U TOTO, YTOOBI
HeproauyuecKas OpPTOHOpPMajbHas CIUIAfiH-cucTeMa mopsaka k& Obula  06a3sMcoM B aTOMHOM
NEPUOAMYECKOM MpocTpaHcTBe Xapau. OTMETUM, YTO NPOCTHIM IPUMEPOM OPTOHOPMAJIBHBIX CILIAMH-
cucTeM sBisieTcst o0mas cucrema OpaHKINHA, PYHKIUU KOTOPOH SIBISIFOTCS KyCOYHO-THHEHHBIMU, TO
€CTh CIUIaliHaMu BTOporo nopsjaka. Ilepronndeckas oproHOpMallbHas CIUIAHH-CUCTEMA ONpPENENIeTCs
IIOCJIEIOBATENbHOCTBIO k-JOIyCTUMBIX Y3JI0B, KOTOpas SIBISETCS BCIOAY IJIOTHOM M UMEET KPAaTHOCTh
He Oonee k. Tak kak Mociue0BaTeNbHOCTD y3JI0B BCIOAY MI0THA Ha T, To TMHENHas 0005109Ka QyHKIMN
{ fé’“), n > 1} sBnsiercs Beroxny mwiotHoii B C'(T), uto, B CBOIO 04epeib, 00eCeunBaeT BCIOY IIOTHOCTh
B H'(T). Takum oGpasom, cucrema { ﬁ(Lk), n > 1} aensercs 6asucom B H'(T) Torma u Tonbko Torma,

KOTJIa OTIepaTopbl OPTOTOHAIBLHON NPOEKINU Pk paBHOMepHO orpanudenbl B H'(T). Mcnons3ys 5ToT
¢axT, MBI J0Ka3bIBa€M, 4YTO OTPAHUYEHHOCTH ONEPATOPOB OPTOTOHAIBHOM MPOEKIUH SKBHBAJCHTHA
k-perynsipHOCTH IOCJIEOBATEIbHOCTH y3/10B Ha T. 3xech Mbl ompezenseM k-peryisipHOCTb Ha T
CJIEAYIOIMKAM 00pa3oM: OTO MOCIENOBATEILHOCTU Y3J0B, O00pa3yloIlde OPTOHOPMAIBHYIO CILIAiH-
cUCTeMy, Ml KOTOpOW OTHOIIEHHE [UIMH HOCHUTENEH COCeIHUX IEepUOANYEeCcKUX B-criaiiHoB
PaBHOMEPHO OTPaHUUYEHO CBEpXy. JloKka3biBasi 1Ba yTBEPKACHHUS, yCTAHABIUBAIOLINE SKBUBAJICHTHOCTD
k-perynspHoctd Ha T W OrpaHMYEHHOCTH OIEPaTOPOB OPTOTOHAIBHOM MPOEKIMH, MbI NPHXOAUM
K TJIIABHOMY pE3ylbTarTy JaHHOW TINaBbl: eCld k-JOMyCTHMasi MOCIEI0BATEILHOCTh Y3JI0B (S;)
Ha T, KOTOpBIH SBISETCS MEPUOJUYECKHUM EIUHUYHBIM HHTEPBAJIOM, YIOBJIETBOPSET YCJIOBUIO k-
perynsapHocTd Ha T, TO COOTBETCTBYIOIAsl IEPUOANYECKAs] OPTOHOPMAJIbHASI CIUIAWH-CUCTEMA MOPsAKA
k snsiercst Gasucom B H'(T). BepHo u 0OpaTHOE: €CiM IEPHOIMYECKas OPTOHOPMAbHAs CILIANH-
cucrema siBysieTcs 6asucom B H'(T), To COOTBETCTBYOIIAs MOCIIENOBATENBHOCTD Y3II0B YIOBIETBOPSET
yCIIOBHIO k-peryisipHoctu Ha T.

Bo Bropoii rmaBe paccmarpuBaeTcst BOpoc 0e3yCIOBHOM 0a3UCHOCTH MEPUOUIECKUX OPTOHOPMATBHBIX
crutaifH-crcTeM nopsizika k. Jlerko 3ametuts, uto Ha T u3 (k—1)-perynspHocTH cienyet k-peryaspHOCTb.
Msl f0oKka3bpiBaeM, 4TO Oosiee CTPOrHe yCIOBHs Ha MOCIEN0BAaTEIbHOCTb Y3J10B IPUBOIAT K TOMY, YTO
COOTBETCTBYIOIIIAsi OPTOHOPMaJIbHasl CIUIAfH-CUCTEMA CTAHOBUTCS 0€3yCIOBHBIM 0a3MCOM, YTO SIBIISETCS
Oosiee CTPOrMM CBOWCTBOM, 4Ye€M KJIacCHMuecKash 0a3MCHOCTb, PAacCMOTpEHHas B IepBoil IiaBe. B
Y4aCTHOCTH, MMOKa3aHo, uTo (k—1)-perymspHocts Ha T mocrartouHa Ajst TOro, 9TOOBI COOTBETCTBYIOIIAS
TIEpUONYECKas OPTOHOPMAJIbHAs CIUIaifH-cucTeMa Oblia Ge3ycioBHbIM Gazucom B H ' (T).

B Tpersell miaBe auccepTalMM IOKa3bIBAECTCSA, YTO €CIIM NMEPHUOANYECKAs OPTOHOPMallbHAas CILIAiH-
cucrema sBiseTcs Oe3ycnoBHbIM 6aziucoM B H'(T), TO COOTBETCTBYIONIAs MOCIEN0BATENLHOCTh Y3I0B
nomkHa ObiTh (k—1)-perymsiproit Ha T. C mpyroit CTOpOHBI, OCHOBHOM pe3yJbTaT BTOPOIl IIaBbI
IPEIOCTABIISET JOCTATOYHOE YCIOBHE ISl TOTO, YTOOBI crcTeMa ( f,sk) )>° | Obl1a 6e3yCIIOBHBIM 6a3uCOM
B H'(T). Takum 00pasom, OObEIMHSASA 3TH IBE TEOPEMBI, MBI MOIYy4AEM, YTO MEPHOMMYECKAS
OpTOHOpMaJIbHAs CIUTaiiH-cucTeMa sBisercst Oasucom B H'(T) Torma W Tompko ToOrma, Korja
COOTBETCTBYIOII[As TOCIIEIOBATENBHOCTD y3710B (k—1)-perymsipra Ha T.

B yerBepTOli IMaBe HUCCIELYHOTCSI MHOXKECTBA €IMHCTBEHHOCTH Ul KpaTHbIX cucteM DpaHKIMHA ¢
TOYKU 3pEHUsl CXOOUMMOCTH B cMblcie IIpunrcxeiima. bBpliu gokas3aHbl CEIyHOIIME JIBE TEOPEMBI:
Ecnu xparssiii psg @paHkirHa CXOOUTC B cMbIcie [IpuHrexeiima K BCIO1y KOHEYHOM MHTETPUPYEMOI
(GYHKIMH, 332 MCKIIOYEHHEM, BO3MOXKHO, HEKOTOPOrO HHUIJIE HE IUIOTHOIO MHOXECTBA, TO JTOT
psaa sBasiercst psgoM Dypee-OpankianHa npenenbHoil gyHkiuu. bosjee Toro, eciau BBITOIHSETCS
ONpPENIEIICHHOE TEXHUYECKOE YCIOBHE, M 4YacTH4YHas cymMMma KpaTHoro psga @paHkiMHa HMeEeT
HOCJIeI0BAaTEeNbHBIN Tpe/ie, SBISIOIIMNACS BCIOLY KOHEYHOM MHTErpupyeMoi (yHKLHUEH, TO 3TOT psj
Takxe sBisercs pagoM Oypre-OpaHkinHa npeaeabHol QyHKIuu.
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