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Relevance of the Research

Solar Photovoltaic (PV) energy is now among the leading renewable energy sources worldwide. The
global installed capacity for solar PV increased from roughly 40 Gigawatt (gW) in 2010 to more than
1.6 Terawatt (tW) by 2023, driven primarily by the decreasing cost of solar modules, favorable clean
energy policies, and growing investments from both the government and private sectors. Despite
this growth, the profitabrlity of large-scale solar farms remains sensitive to different factors. The
performance of PV modules largely depends on environmental factors (such as dust, snow, shades),
theirs inner conditions (such as bad connections) and outer physical conditions (such as cracks, hot-
spots), as demonstrated in Figure 1. Field data and financial analyses show that these hidden and
environmental faults translate into three impacts:

¢ Tiny hidden faults including dust shading, hair-line cracks, bad connectors, and hot-spots trim
about 5-9% of annual energy yield. Field inspections show that roughly 12% of modules
already have such defects within the first two years, and unchecked hot-spots may even ignite
fires.

* Only 1% annual decrease in solar plant performance can translate into €3 billion lifetime
revenue losses, significantly affecting the financial viability of large-scale installations. Current
studies put the global bill for "invisible" performance loss at roughly €3-15 billion each year.

« Well-kept modules typically fade by only 0.5% per year, staying close to 90% of their power
after 20 years. Dirt, moisture and thermally stressed hot-spots speed that annual degradation
beyond 1%, cutting useful life and forcing earlier, costly replacements.

Therefore, monitoring and maintaining optimal solar panel performance is crucial to minimizing
energy production losses. Currently, three primary approaches exist for monitoring PV installations,
each with unique costs, accuracy, and operational constraints (as described in Table 1).

Clean Dust

Cement

acks

Figure 1: Solar PV fault examples.



Table 1: Coroparison of PV-array monitoring approaches

Metric Manual Inspection Embedded Sensors  UAV Maonitoring
Typical cost < $1,500MW~! ~ $10,000MW ! ~ $150-500 MW !
Inspection time <25hMwW™! Real-time, continuous = 3.75hMW™!
Maintenance cycle  Crew on demand Sensor swap 2-5 yr Battery recharge
Accuracy / error 20-30% miss-rate +2-3% sensor drift 1-5% false detections
Energy impact ~d-6% lossyr ! ~4-7% lossyr ™ <1% lossyr~!

Human manual inspection (visval. thermal and electroluminescence checks} can diagnose
individual modules in depth but remains costly. about $1.500 MW ! and labour-intensive. requiring
~25 h per 1,000 panels. As crews typically sample only 10-25 % of modules and miss-rates run
20-30 %. residual energy losses stay at 4-6 % yr~! (residual losses are the portion energy yield still
lost due to missed faults during inspection).

Embedded sensor networks offer automated continucus monitoring by embedding sensors
directly into PV arrays. Despite their automation advantages, these systems have substantial initial
costs. reaching approximately $10.000 per MW. Moreover. sensors require regular replacement every 2-
5 years due to sensor degradation and operational wear. resulting in additional expenses. Measurement
inaccuracies from these sensors can reach more than 2%. potentially leading to significant annual
residual losses of around 4-7%.

UAV-based monitoring is a promising alternative that addresses many limitations of the previous

methods. It covers 1 MW of panels in minutes. cutting operations cost by 50-90 % (= $150 —
500 MW 1) and field time by ~ 85% (= 3.75 hMW~!). Through advanced deep learning analytics.
UAYV systems achieve fault detection accuracies between 93 % and 99 %. which translates into estimated
annual losses of just about 0.5.
These advancements. however. critically depend on the effectiveness of computer vision algorithms
deployed on UAVs. The greater the accuracy and speed of these algorithms. the more reliable and
efficient the overall PV monitoring process becomes, directly impacting the reduction of undetected
faults and residual energy losses.

Camera Types. The first vital factor to consider when designing a UAV-based monitoring pipeline
is the choice of camera. Different cameras significantly impact efficiency. performance, accuracy. and
cost. In this field, four primary camera categories are used, each possessing distinct strengths and
limitations. Table 2 summarizes the advantages and disadvantages of these camera types.

1. Visible Red-Green-Blue (RGB) camera captures three discrete spectral bands corresponding
to red, green, and blue light. These images typically offer high spatial resolution but limited
spectral detail. RGB cameras are also sensitive to noise and varying lighting conditions. However,
thewr widespread availability and relatively low cost make them a common choice.

2. Thermal camera records emitted infrared radiation in a single spectral band, making it effective
for detecting temperature variations on solar panels. Despite their effectiveness. thermal images
typically possess lower spatial resolution and might miss fine structural details. Additionally,



high-quality thermal cameras are significantly more expensive than standard RGB cameras.

3. Electroluminescence (EL) camera generates single-band images capturing electroluminescent
emissions from electrically biased panels. EL imaging effectively identifies micro-cracks, inactive
cells, and contact defects. However, EL cameras require dark conditions and an external power
source to energize panels. Thus, EL cameras cannot operate independently on UAV platforms
and typically serve as supplementary devices. Additionally, their relatively large size and higher
cost further constrain their UAV applicability.

4. Multispectral camera captures numerous narrow spectral bands (up to hundreds in the case of
hyperspectral cameras), providing detailed spectral information, which 18 crucial for precise
material discrimination. While multispectral imaging is highly eftective for monitoring tasks due
to its comprehensive spectral detail, these cameras are heavier and considerably more expensive,
limiting thew suitability for UAV applications.

Table 2: Comparison of camera types for solar panel monitoring

Camera Type Bands Advantages Disadvantages
Visible RGB 3 (Red, Green, Blue) High spatial resolution; Limited spectral detail,
widely available: low cost. sensitive to noise and
lighting variations.
Thermal 1 (Infrared) Effective at detecting Lower spatial resolution;
temperature differences and  high-end units are relatively
hot spots. expensive.,
Electroluminescence (EL) 1 (Emutted under electrical Reveals micro-cracks, Requires dark conditions
bias) nactive cells, and contact and extemal power; bulky
defects. and expensive equipment.
Multispectral 4-400+ narrow bands Rich spectral information: Heavy and costly; less
Non-sensitive to practical for UAV
environmental effects, deployvment.

Multispectral Cameras. Multispectral cameras record a scene with N namrow wavelength bands,
rather than a standard sensor's three broad RGB channels. The raw data form a spectral cube
e,y Ae), k= 1,..., N, where each band index k captures a small wavelength window

centered at Ay (for example, Ay = 450nm. Az = 550nm. and so on). Each pixel is therefore
described by an N-dimensional spectral vector

I‘(il?s’y) = [I(T, Y, AL, I(a:,y, Azl ,I(;l?,y,/\,’\f)]T,

whose k-th component stores the reflected light in that band. Every element of r(e, y) corresponds to
one narrow wavelength centered at A (please see Figure 2). Since different materials peak at different
wavelengths, they stand out in different bands, giving computer vision algorithms richer information
than ordinary color images.
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The same principle works for solar panel inspection. Silicon cells (solar panels are made by silicon)
show characteristic absorption in the short-wave range (1100 nm to 1500 nm), so panels can be visible
better in just two or three specific A;, bands while remaining almost invisible in raw RGB. Algorithms
that work on r(:z, %) instead of { R, G, B) reach 10-20 % higher F| scores for segmentation and fault
classification. Despite all these advantages. multispectral cameras can bring additional complexity and
challenges.

The first challenge is their non-real-time operations. as the majority of multispectral systems
depend on spatial scanning. The reason is that the sensor must traverse the scene or wavelength range
sequentially.

The second challenge is more prolonged exposure or scan times. which also make it difficult to
capture scenes that contain mafion. Some solutions exist, such as mosaic filter arrays and light-field-
based cameras. They bring a speed close to real-time multispectral capture. Still. they decrease the
spectral and spatial resolutions. which are the main advantages of multispectral cameras. There is no
reason to use these cameras without spectral and spatial high resolution.

The third challenge is the cost. Even low-cost multi/hyper-spectral cameras remain expensive
(typically $10-$100k). heavy and power consuming, limiting their usage on UAV platforms. These
factors limit the widespread deployment of multi-/hyperspectral cameras in drone-based applications.

The fourth challenge is the band size of multispectral images. which can have up to 400 channels
(called hyperspectral camera), and their processing requires a lot of computational power.

Other challenges include accurate solar panel localization from the image. fault classification,
and their efliciency and computational complexity. Balancing the high accuracy of algorithms under
resource-constrained environments (e.g., on UAV platforms) remains a challenge in existing methods.

To overcome these challenges and limitations, this thesis introduces a Multispectral Decomposition
(MD) method that generates multispectral bands from a standard RGB image. MD “decomposes” RGB
data into separate spectral channels, offering multispectral-like features with affordable, lightweight
RGB cameras. We demonstrate that MD significantly improves performance on critical monitoring
tasks, addressing real-world challenges in solar panel inspection. Furthermore. new harmonic networks
are proposed to reduce computational complexity, memory usage, lower energy consumption, and
optimize latency, thereby enabling near real-time analysis in practical UAV inspection scenarios.

The Goal of the Thesis

The goal of this thesis 18 to address the challenges presented above and develop reliable, fast, and
accurate deep learning based Computer Vision (CV) algorithms/models essential for an advanced
automated solar PV monitoring system. To achieve this goal, the following technical tasks are set:

1. Develop a general reflectance extraction and multispectral decomposition network
2. Design an efficient spectral band selection strategy

3. Develop an efficient solar panel segmentation framework

4. Implement an efficient and accurate harmonic fault classification networks

5. Evaluate the system on key metrics, including accuracy, computational complexity, and show
the generalization and practical applications of the proposed methods.



Structure of the Thesis

Figure 3 illustrates the structure of the thesis, its Chapters, their connections, and corresponding
contributions in the overall system.

[ Introduction (Chapter 1) ]

v

—W— Chapter 2 H Chapter 3 H Chapter 4 ]
Multispectral 3 5 2 Fault
Decomposition l [ Dy Seomsncation I l Classification

Input RGB l IEnhancemcnt

Evaluation on Accuracy and Computational Complexity

Evaluation on Other Application (Chapter 5)

Conclusion (Chapter 6)

Figure 3: Structure of the thesis.

Chapter 1 serves as an introduction. It gives the definition and the motivation of the problem, high-
lights main challenges, sets the goal of the thesis and technical objectives, provides main contributions,
lists the publications in the scope of this thesis, and emphasizes the impact of the thesis.

Chapter 2 aims to develop a generalized multispectral decomposition framework that addresses
critical limitations of existing RGB-to-spectral reconstruction methods. Despite achieving very low
pixel-wise reconstruction errors, current deep learning-based approaches still suffer from poor general-
ization across diverse lighting conditions and varying camera sensors. Besides, they cannot decompose
a variable number of spectral bands, resulting in redundant, blurred, and less informative outputs.
Moreover, they lose crucial details and lack evaluation on downstream remote sensing tasks. To
overcome these challenges, this Chapter proposes Retinex-based spectral reconstruction pipeline.
First, an illumination-invariant enhancement step is introduced, ensuring consistent performance
across diverse real-world scenarios. The step is designed to extract intrinsic reflectance R and scene
illumination L from UAV imagery. Here R contains the materials’colors and fine textures of the scene
and is invariant to lighting, whereas L is a smooth, single-channel map that captures overall brightness.
According to Retinex theory, an observed RGB image | can be expressed pixel-wise as

7Gr.y) = L@, y) R{x,y). (x,y) Gfi. 1)

The problem is that both L and R are unknown, and it makes this extraction an ill-posed problem:
infinitely many pairs (L. R) satisfy the same product. To find an optimal solution, this Chapter
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Figure 5. FEMST architecture.

introduces an RSD-Net [11, a two-branch network trained on matched low- and normal-illumination
views of the same scene. Next, a developed Frequency Enhanced Multi Stage Transformer (FEMST)
network decomposes 256 spectral bands. Figure 4 gives a high-level view of the proposed pipeline.
Starting from a raw UAV RGB image, the framework proceeds through four sequential modules, each
designed to solve one of the challenges stated above:

1. RSD-Net (Retinex Decomposition). The input image is first fed to RSD-Net, a lightweight
2-branch network that decomposes the scene into an illumination map L and an illumination-
invariant reflectance R. Then we use reflectance for further processing, ensuring that subsequent
stages operate on a physically grounded signal robust to changes in sun angle, cloud cover, or
exposure/camera settings.



2. FEMST Core Network. The reflectance map enters the FEMST network (illustrated in Figure
5). The architecture of FEMST is inspired by, which uses multi-stage visual transformer blocks
to expand the feature dimension progressively. Instead of their Spectral Attention Block (SAB)
we use our proposed Frequency Attention Block (FAB). Learnable frequency attention masks
select informative spectra in the frequency domain, and an inverse FFT returns the features to
the spatial domain. This operation reduces redundant channels and keeps the model simple,
enhancing generalization in data-scarce settings.

3. Adaptive Band Selection. An attention-based scoring block ranks the B output bands and
selects the top K channels (user-specified) for downstream tasks.

The main results in this chapter are the improved quality of reflectance extraction and the better general
decomposition of multispectral bands from RGB images. Strong computer simulations prove the
superiority of RSD-Net and FEMST against other state-of-the-art methods. Key image similarity and
reconstruction metrics (such as PSNR, SSIM, RMSE) are utilized for evaluation. Figure 6 demonstrates
some bands predicted by the FEMST network. For each image, both reflectance and its original RGB
components are used for the decomposition. It is observed that band variability significantly increased
when reflectance is used as an input. Additionally, this chapter proposes an entropy-based (ES)
measure for quantifying spectral information in bands, which is a gap in existing methods. Two

(b)

Figure 6: Band decomposition results for some band indexes: a) input and reflectance images b)
index 1c) index 5, d) index 10 €) index 15, f) index 25, g) index 30
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Table 3: NTIRE 2022 HSI validation results.

Method Params (M) FLOPs{(G) MRAE| RMSE| PSNR{ ES{
HSCNN+ 4.65 304.45 0.3814 0.0588 26.36 0.802
HRNet 31.70 163.81 0.3476 0.0550 26.89 0.812
EDSR 242 158.32 0.3277 0.0437 28.29 0.845
AWAN 4.04 270.61 0.2500 0.0367 31.22 0.861
HDNet 2.66 173.81 0.2048 0.0317 3213 0.870
HINet 5.21 31.04 0.2032 0.0303 32.51 0.882
MIRNet 375 42.95 0.1890 0.0274 3329 0.886
Restormer 15.11 93.77 0.1833 0.0274 33.40 0.887
MPRNet 3.62 101.59 0.1817 0.0270 33.50 0.890
MST-L 245 32.07 0.1772 0.0256 3390 0.8394
MST++ 1.62 23.05 0.1645 0.0248 3432 0.903
FEMST (Ours) 1.72 199 0.1405 0.0197 35.12 0.912

Table 4: Retinex decomposition results on LOL dataset.

Model PSNR SSIM RMSE MRAE
R2RNet 2021 0816 0.115 0.105
Retinex-2021 16.77 0.562 0.248 0.129
Deep Retinex 16.77 0425 0275 0.272
KinD++ 21.80 0.829 0.102 0.098

RSD-Net (Ours) 2249 0345 0.085 0.083

benchmark datasets (LOL and ARAD-1K) are used for the training and comparison of the proposed
2 networks with existing state-of -the-art methods. Tables 3 and 4 summarize the results and show that
the proposed networks outperform existing methods across different metrics.

Chapter 3 creates a Solar Panel Segmentation (SPS) framework, called MSS-Net (Multispectral
Segmentation Network) [2], which is first to utilize Multispectral Decomposition (MD) for the
segmentation task. The MD (from Chapter 2) solves challenges that most segmentation methods
face during remote sensing image analytics. They often fail to adequately consider the intrinsic
physical characteristics of solar panels, such as color and texture, which often translates into false
positive errors. Besides that, remote sensing aerial images commonly have low resolution and various
degradations, which pose a challenge in differentiating small panels from their surroundings. Moreover,
then high computational demands and large trainable parameter size limit real-tume applications and
then generalization to different complex scenes. To address these challenges, this Chapter integrates
a multispectral decomposition framework, introduced in Chapter 2. An efficient band selection
mechanism is designed to select the optimal bands, containing rich information about solar panels.
This minimizes the possible false positive emrors of other SOTA methods. Moreover, a Chebyshev
Transformation (CHT) layers are introduced and integrated in the network to keep it efficient and
reduce trainable parameters, thus reducing overfitting and generalization errors. Figure 7 illustrates
the architecture of MSS-Net. and Figure 8 shows some bands (j-n), their comesponding weight maps
(c-g), the final guide image (1), and the final prediction of the solar panel mask (h}.
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Figure 7: Overall architecture of MSS-Net
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Figure 8: Band decomposition (e-g) with their corresponding weight maps (j-n), predicted by band
selection module, &) and b) are original image and its reflectance respectively, i) is the combined
guided image and h) is the final mask.

1] (k) ()] (m) (n)

The presented method is validated on three publicly available SPS benchmark datasets (BDAPPV,
PV, and DeepSolar). The comparison of the performance of MSS-Net is made against other meth-
ods, including CNN-based and transformer-based networks, showing that the proposed framework
outperformed all SOTA methods across several key evaluation metrics, while reducing the trainable

parameter size multiple times.
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Chapter 4 solves the main fault classification task in the monitoring pipeline. Existing Visual
Transformer (ViT)s are considered as SOTA models in classification tasks, but have limitations such
as quadratic computational complexity and a large training dataset requirement. As demonstrated
in this Chapter, some redundancy of learned features also arises from self-attention blocks. To
address these limitations, this Chapter aims to develop lightweight and efficient Fast Fourier Trasnform
Power Coefficient (FFT-PC) and Slant Fast Orthogonal Transformation (SFOT) modules ([3]) to
replace existing self-attention layers of visual transformers, achieving comparable accuracy to vision
transformers while significantly enhancing computational efficiency. In parallel, the Spatial Power
Coefficient (S-PC) module uses architectural concepts from to enhance edges in the spatial domain,
fusing its output with FFT-PC in the frequency domain.

r P
l J FFI-PC Module o %
( (6 — @ 2
Elementwise || Eleneniwise a >
Pawer "'ﬂ Multiplication t o 3
Learnable Bets Coefs Leamable Filter N Y 2 = ,— )
() : 4 > 3 g 1=
~ . g {
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z 2D FFT i . 2
g z
=y &
Input — mK sm’!
(. -
ol = z z ‘ :
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= z B 2
S|ILS 3 | 3 Jl:

Figure 9: Overall architecture of MobileFFT or MobileSFOT.

Two new networks are developed based on FFT and Slant transformations, called MobileFFT and
MobileSFOT' which are illustrated in Figure 9. The MobileFFT is based on the FFT-PC module, which
begins by applying a convolution to spatial dimensions to adjust and reduce the channel size of the
input feature map for the frequency transformations. Final output | out is calculated by the following
formulas:

FEHD V)= [17()( u-t)"3Ww’) eJ

@)
Where arg(jr(/)(u, v)) is the phase of the Fourier transform, and |jr(/)(u, u)| is the magnitude
of the Fourier transform. Figure 9 illustrates the overall architecture of the FFT-PC block. In the
final step, an additional convolution is used to restore the channel size to its original dimension before

reduction. Similarly, MobileSFOT uses Slant fast orthogonal transformation.
Compared to standard transformer-based attention blocks, the proposed approach achieves ap-
proximately 4x fewer Giga Floating Point Operation (GFLOP)s (1.26 GFLOPs), ~ 2.5 x fewer
parameters (1.45 M), reduced inference latency, reduced Graphics Processing Unit (GPU) memory

usage, and lower energy consumption (as shown in Table 5). This allows near-real-time Central
Processing Unit (CPU) performance with low classification error (Figure 10, Table 6).
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Table 5: Comparison of computational complexities

Model Params.
MobileNetV3 1.50
EfficientNet 7.70
DenseNetl 21 7.00
DaViT-T 27.50
GCViT-xxt 11.48
MobileViT-xs 2.00
DFFformer-si8 28.00
GFNet 7.10
MobileFFT 1.45
MobileSFOT 1.45
MobileFFT-light 0.70
MobileSFOT-light 0.70

Table 6: Quantitative comparison of

Models Acc.
MobileViT3 0.826
EfficientNet 0.829
DenseNetl21 0.862
DaViT_T 0.833
GCVIiT_xxt 0.824
MobileViT_xs 0.841
DFFformer_s 18 0.836
GFNet 0.823
MobileFFT-light 0.855
MobileSFOT-light ~ 0.843
MobileFFT 0.874
MobileSFOT 0.861
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Figure 10: Results of MobileFFT network on ELPV binary classification dataset, (a) ROC curve, (b)
Precision-Recall curve, and (C) confusion matrix.
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Chapter 5 evaluates the generalization and performance of the multispectral decomposition-based
pipeline on other tasks. It proves the practical applicability of the methods in real-world applications.
This Chapter proposes a novel solution (MSSOD-Net) [4J to solve Salient Object Detection (SOD)
problem. SOD aims to identify the most visually prominent objects in images, crucial for tasks like
image segmentation, visual tracking, autonomous navigation, and photo cropping (input and expected
output examples are demonstrated in Figure 11).

Figure 11: Examples of SOD. Input and expected outputs are in the first and second rows,
respectively.

Overall architecture of the proposed pipeline is illustrated in Figure 12. Initially, the RGB image is
enhanced and decomposed into multiple spectral bands, enhancing the representation of salient features
by capturing richer spectral information. Next, the bands containing the most salient information are

Output

Segmentation
Network

Image
Enhancement

L]

Spectral Residual
Saliency Detection

Synthetic RGB

Figure 12: Overall architecture and workflow of MSSOD-Net.



identified and selected using a newly developed entropy-based measure operating in the frequency
domain. A new synthetic RGB image is generated through the chosen bands, emphasizing salient
objects more distinctly than the original input. Finally, a segmentation model processes the fused input
(original and synthetic RGB), significantly improving the accuracy and reliability of salient object
segmentation, especially in complex remote sensing scenarios.

To efficiently identify the most informative spectral bands, for each block B rJ of the image (with
i=0.1..... H landj = 0,1,..., W —1, where H and W are the image’s height and width), a
Fourier transform is performed to obtain the DC and AC components:

Fij FFT(By), Fffl=FFTShift(FtJ).

DC,, =

F“'(0,0)]3f AC,

a 1y 1

a and 0 coefficients are selected experimentally at 0.6 and 2, respectively. A probability value pKkl is
computed from the ratio of the AC and DC components from the k-tli band:

L% = AC"

ac + ik »

Finally, we compute the entropy-based band selection measure Il for each band k using the
following formula:

Hi,= 20( i0g(/4))-

(a) (b) () (d) (e) (f) (@)

Figure 13: Comparison of MSSOD-Net with others, (a) input image, (b) SRS, (C) GCR, (d)
DeepLabV3, (€) GCANet, (f) MSSOD-Net, (g) ground truth.
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Comprehensive experiments on publicly available benchmark datasets validate the superior perfor-
mance of MSSOD-Net compared to state-of-the-art approaches. Visual comparison of the proposed
framework with other methods is presented in Figure 13. On the contrary. MSSOD-Net has success-
fully detected the salient objects and has better boundaries than others, which have unclear object
boundaries, false positive detected pixels. and miss some parts of the objects. The experiments demon-
strate that the proposed multispectral decomposition method effectively generalizes to a broader range
of remote sensing applications beyond solar panel monitoring tasks.
Chapter 6 concludes the thesis and summarizes the results and key contributions.

Contributions of the Thesis

The key contributions of the proposed methods and frameworks are:

1.

Introducing a novel Multispectral Decomposition (MD) framework featuring RSD-Net and
FEMST for reflectance extraction and multispectral decomposition.

. Developing MSS-Net, the first multispectral decomposition and Chebyshey transformation-

based segmentation pipeline.

. Proposing lightweight transformer modules based on harmeonic transforms instead of self-

attention layers in visual transformers. significantly reducing computational complexity. energy
consumption, and redundant information in transformers.

. Extensive benchmarking demonstrating the superiority of developed frameworks across perfor-

mance anx precision key metrics compared to existing state-of-the-art models

Practical Contributions of the Thesis

The methods proposed in this thesis have been practically applied and validated through extensive
experimental evaluations, confirming their real-world utility in two key domains:

1. The proposed RGB-multispectral decomposition and harmonic networks were applied to UAV-

based remote sensing tasks, specifically salient object detection (SOD) [4]. Rigorous experi-
mentation on publicly available UAV imagery benchmark datasets (such as EORSSD) confirmed
the methods’ effectiveness, efficiency, and ability to surpass existing state-of -the-art algorithms.

2. The newly developed Retinex-based decomposition network was successfully employed for

practical low-light and nighttime visibility restoration [1]. Experiments conducted under
realistic conditions clearly demonstrated significant visibility improvements. establishing the
network’s superiority over traditional and contemporary state-of-the-art visibility enhancement
methods.

This thesis addresses real-world problems approved and tfunded by the FAST Foundation under the
ADVANCE Research Program, in cooperation with the Higher Education and Science Committee of
the Republic of Armenia (Project No. 25FAST-1B001).
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Potential Application Domains

This thesis makes a strong contribution to industry and academia by presenting a general framework
that extracts multispectral-level insight from an RGB camera. Besides the main problems this thesis
addresses, it can impact other domains as well:

1.

Bridges, pipelines, and power-line corridors and other structures can be surveyed in a single
pass with a low-cost camera.

. In agriculture, UAVs can map water deficits, dry areas, yield variations, plant diseases, and

animals. The system can easily detect and segment every category of interest using multispectral
bands.

. Military applications have tasks that rely on night-vision, infrared. or near-infra-red (NIR}

imagery. The proposed methodology can enhance low-light scenes and extract infrared-like
bands from the multispectral decomposition.

. In computer vision research, a paired RGB-multispectral dataset can be generated for training

and benchmarking.

. Biotech and healthcare can benefit from the proposed framework by getting spectral channels

from standard microscopes. This can be combined with automatic segmentation in tissue and
cell studies.
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JarmioueHne
TacnapsaH A¥ixk ApHaKOBHY

VayuuienaHe aHATH3a CO/THEUHBIX NAHENEH ¢ MTOMOMIBE MHOTOCOEKTPAIBHOH
AexomnosHuud RGB i rapMoHaYeckix ceteid

Padora mocBsilieHa  aBTOMATH3UPOBAHHOMY  MOHMTODHHTY  COJHEYHBIX IAHENlEH ¢
HCTIONB30PAHHEM MYIETHCIIEKTPATBHOH Aexomriozviii RGB-1300pakeHini H rapMOHIYeCKHX
ceteil. Llemsto HeeneIoBaHuA SBIACTCS CYIICCTBEHHOS MIOBBILICHHE 3O (OCSKTHBHOCTH, TOUHOCTH H
NPAKTHYECKOH  MPHMEHHMOCTH  BHISOMOHHTODHHTA,  OCYIUECTBISEMOIO ¢  MOMOIIEIO
GeCIUIOTHBIX JeTaTelIbHBIX ammapato (BILTA).

AKTyanbHOCTE paboTel oOyCIOBNTEHa TeM, YTo OCHApPYKEHHE H AQHAIH? MHOTOMHCIEHHBIX
JepeKTOB, BOSHUKAIOIMX B IPOLECCE HCTONB30BAHMS COMHEUHBIX IMAHEICH (TaKUX Kak IhUIb,
MHKPOTPEIMHEI, HAPYILUEeHHS COeJHHEHHI, 3aTeHeHle), NPeacTARIAeT co00l CIOMHYIO 3a1aqy,
HanpAMYIO BIMSTOILYIO Ha 3Q()eKTHBHOCTD X PaSoThl M MPHBOAAIYIO K SHAUHUTE/IBHBIM NOTEPSIM
9HepruH. CYIIECTBYIOIHE HA CETOTHAIMHHI NeHb MeTOJbl MOHHUTOPHHIA (PYUHOH OCMOTD,
BCTPOSHHBIC CEHCOPHBIE CHCTEMEI U HeTioNb3oBaHue BILIA) o0nafaioT paioM orpaHHUCHHI 1
HEJOCTATKOB: BEICOKAg CTOHMOCTB, OTPAHHYEHHAA CKOPOCTE PabOTHL, HU3Kasd TOUHOCTD H JpYTHe
HEIOCTATKH.

OcHoBHas nenb paGoTbi — pa3paGoTka SPPEKTHBHEIX, PEICOKOCKOPOCTHBIX M HAJEKHBIX
BH3VAIBHBIX ~AJTOPUTMOB DIy0oKoro o0y4yeHHA. OCSCMEUMBAIOIMX BHICOKMI  YPOBSHB
ABTOMATH3HPOBAHHOTO MOHMTODHHTA CONMHEMHBIX IIAHeTeH M CHOCOGHBIX IMPEeoNoNeraTh
OTPaHIUCHHS CYILECTBY IOIIMX TTOAXOM0B.

Hay‘ll'lilﬂ HOBH3HA H 0CHOBHbI¢ PeHI€HHDbIC 32JAYH 3AKITHYINTCA B CJISAYHOIEM:

1. Tlpepnowena HOBas ABYXBeTBeBasl ceTh RSD-Net, BRITOMHSIONAS BBICICHHE KOMIIOHCHTBI
otpaxenus1 H3 RGB-uzo0paxeHus. 3aTteM BEOIONMHAETCS MYIETHCIIEKTPANbHOE pazloiKeHHe
H300pakeHHI OTPaKeHMS! Ha KaHalbl JUI4  MYIBTHCICKTPATBHOTO  PasiIoKeHIS
ucnonb3oBaHa ceTtk FEMST, comepxamad HoBele ofyvaemele ONOKM HA OCHOBE
MOAU(HIHPOBAaHHOTO NpeodpasoBarisl Oypbe.

2. Pa3paGoTaH amropuTM MYIETHCIIEKTPATBHON cermeHTalpmi (segmentation) MSS-Net ¢
HOBBIM MEXaHH3MOM BBIGOpa KaHAIOB Ha OCHOBE MpeoOpasoBaHMd YeGbllLicBa, KOTOPBIA
3HAYHTETEHO CHIDKAET KOTHYECTBO JIOJKHOTIONOAMTENbHEIN OIHOOK.

3. Tlpemnoxenn! rapmoHudeckiie ceti MobileFFT 1 MobileSFOT ¢ HOBBIMH BH3YANBHEIMH
MeXaHH3MaMH «BHHMaHUA» (attention mechanisms), paGOTaLIMMK B UaCTOTHOH 00/1acTH,
KOTOpHIE 2HAMHTENEHO COKPAMAIOT BEMHCIHMTENBHYIO H ANTOPHTMHMECKYIO CIOXKHOCTB
CYIIECTBYIOIIMX TPAHCGOPMEPOB, a TAKkKe 3aTPaThl MOIHOCTH H SHEPTHH, COXPAHSIA NMpH
3TOM BBICOKVIO TOUHOCTD,

4., BHeapeH HOBBIA KpHTepii BHIGOpPa Ha OCHOBE IHTPONHH, TO3BOLTIONMI aBTOMATHUSCKH
BLIOHpaTy HauGonee HMHOOPMATHBHBIE KAHATLI H3 PEVILTATOB MYILTHCIEKTPANBHOTO
PasTOXKEHISL

5. TlpomeMoHCTpHpoBaHa 0G0GIMAEMOCTE MONHOH LIEMOYKH MPENT0KeHHEIX AITOPHTMOB HA
JPYTHe 3aJa4H, MPHMEHIeMEIe B THCTAHIIHOHHOM 30HIHPOBAHMH ¢ moMombio BITJIA.
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MpaKTuyeckune pesynbTaTbl paboThbl

MeTozbl, NPef/IoKeHHbIe B 3TOM AuccepTaumu, 6bIM NPAKTUYECKN MPUMEHEHBI N NPOBEPEHbI
MOCPEACTBOM  OBLUMPHBIX  3KCMEPUMEHTAIbHLIX  OLEHOK, MOATBEPXKAAIOLMX WX PeasibHYH
MOE3HOCTb B [IBYX K/THOUEBbIX 0G/1ACTSX:

e TMpepnoxeHHble RGB-MynbTHCNEKTPaIbHAA AEKOMMO3ULMA U TapMOHUYECKME CETU Obln
MPUMEHeHbI K 3afa4aM AMCTaHLMOHHOIO 30HAMPOBaHUA Ha ocHoBe BIJ1A, B YacTHOCTM, K
06HaPY>KeHNI0 3aMeTHbIX 06bekToB (SOD). CTporue 3KCrnepyMeHTbl Ha 06LLIEfOCTYMHbIX
Habopax AaHHbIX 3TaNlOHHbIX M306paxeHnin BIJIA (Takmx kak EORSSD) noartsepavnu
3(b(heKTUBHOCTb, AEACTBEHHOCTb M CMOCOOGHOCTb METOAOB MPEBOCXOAUTH CYLLECTBYHOLLME
COBPEMEHHbIE a/IrOPUTMbI.

e HepaBHO paspaGoTaHHas CETb [EKOMMO3ULMM Ha OCHOBE Teopun Retinex Gblna yCreLlHO
1CNO/b30BaHa /151 NPAKTUYECKOr0 BOCCTAHOB/IEHWSI BUAVUMOCTM NP CNaboM OCBELLEHNN U B
HOYHOE BpEMS. DKCMEPUMEHTbI, MPOBELEHHbIE B PEa/IMCTUYHBIX YCMOBWSX, HArMsgHO
MPOAEMOHCTPMPOBA/IM 3HAUMTENILHOE Y/yULLEHE BUAUMOCTM, YCTAaHOBUB MPEBOCXOACTBO
CETU Haf TPaguLMOHHBIMWA U COBPEMEHHBIMW COBPEMEHHBLIMY METOAAMU  YIlyuLLEHNSs!
BUAMMOCTMU.

OCHOBHbIe pesynbTaTbl U Hay4HbIl BKNaA AuUccepTaLumn, NpeacTaBneHHOR Ha coMcKaHue
YUEHOI CTeneHn KaHamaaTa TeXHUYECKUX HayK, 06ECNeunBatoT KayecTBeHHO HOBbIN YPOBEHb
aBTOMATM3MPOBAHHOIO aHann3a B 06/1aCTU MOHUTOPMHIA COMHEYHbIX NaHenel, NPeBOCXOAALLMIA
CYLUECTBYHOLLIME METOAbI MO TOYHOCTM, CKOPOCTM 06paBOTKM 1 NPaKTUYECKOI NPUMEHUMOCTM.
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