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Figure 2: Examples of object detection failures under bad weather conditions across different imaging modalities.

temporal consistency becomes critical for reliable performance (see Figure 2 for examples of such
failures).

These detection failures translate directly into real-world harms with significant consequences.
When object detection systems fail due to environmental degradations such as fog, haze, poor illu-
mination. or occlusions, critical image features become obscured, resulting in missed detections or
misclassifications that can have severe implications.

Road safety reports by the United States (U.S.) indicate that low-visibility conditions, including
fog, haze, and nighttime driving, contribute to a disproportionate number of fatal crashes. Al-
though these conditions account for a small percentage of total driving exposure, they collectively
account for nearly 50% of all traffic fatalities in the U.S.. The increased risk results from reduced
driver awareness, delayed reaction times, and reduced effectiveness of vehicle safety systems.
Studies further illustrate that the effectiveness of autonomous braking systems can be reduced
by 30% to 80% when visibility is reduced due to severe fog conditions, significantly narrowing
reaction times and increasing collision risks.

Surveillance systems at fixed locations also experience severe impairments under low visibility
conditions. For instance, camera-based motion detection systems frequently generate false
alarms triggered by fog, dust, and insects. According to U.S. policing studies, false alarm rates
for burglar alarm dispatches range from 94% to 98%, placing unnecessary burdens on law
enforcement resources. Furthermore, criminals exploit visibility impairments, with analyses
indicating that approximately 50% of residential burglaries occur during nighttime or under low
visibility when RGB camera systems demonstrate the lowest reliability.

Wildlife conservation efforts are similarly impacted, as around 80% of unauthorized wildlife
hunting incidents occur under dense atmospheric haze. Although drone surveillance provides
crucial monitoring capabilities, aerial operations frequently encounter significant disruptions
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generation. and model adaptability across diverse thermal imaging systems with varying specifications.

General thermal image enhancement techniques aim to improve the overall quality and interpretabil-
ity of thermal imagery by addressing common challenges. including low contrast. detail obscuration.
ghosting effects from overlapping thermal radiation, and inconsistent sensor characteristics (see Figure
3 (¢)). Recent approaches, including GAN-based approaches and CNN architectures. have advanced
image quality considerably but continue to face generalization difticulties in complex scenarios, partic-
ularly those involving reflective materials and ambiguous thermal patterns.

Thermal video enhancement extends beyond static image processing by addressing the temporal
characteristics inherent to thermal video data. This introduces additional complexities. such as motion
blur, temporal inconsistencies, rapid scene dynamics, and variability in sensor responses over time (see
Figure 3 (d}). Methods that leverage temporal context encounter significant challenges in effectively
handling non-rigid motion and complex thermal variations across frames. These temporal artifacts
and inconsistencies severely undermine object detection performance, leading to unreliable detections.
increased false positives. and missed targets, particulaily in dynamic environments where consistent
and accurate detection is essential.

Thermal image colorization represents a transformative approach to bridging the gap between TIR
and RGB domains by addressing the inherent lack of color information and typically low contrast with
unclear object boundaries in thermal imagery. TIR to RGB colorization is the process of transforming a
single-channel TIR image into a three-channel color image that corresponds to visible-spectrum images.
This process aims to generate realistic textures, colors. and visual details that would be present if the
scene were captured by an RGB camera under favorable lighting conditions. as illustrated in Figure 3 (e).
Colorizing thermal images enhances both human interpretability and compatibility with RGB-trained
models. It provides a more intuitive visual representation and allows existing RGB-based algorithms
to be applied to thermal data without extensive retraining. Recent deep learning frameworks for TIR-
to-RGB translation encounter significant challenges, including semantic distortions. inconsistent detail
preservation, temporal instability in video sequences, and suboptimal performance with small objects.
which complicates accurate thermal-to-visible translation for precision applications like autonomous
driving systems.

Given these substantial and persistent challenges, there remains a critical need for innovative
approaches to enhance object detection systems' reliability under adverse weather and low-visibility
conditions. This thesis addresses these challenges by proposing novel deep-learning methodologies
tailored to improve image and video quality in visually degraded environments. In particular, we
concentrate on advanced image dehazing methods that effectively mitigate atmospheric interference
in RGB and TIR modalities. Furthermore, we investigate specialized enhancement techniques for
thermal images and videos. employing recent advancements in neural architectures to handle unique
degradations such as low contrast, edge ambiguity. and temporal inconsistencies. Finally. this work
explores TIR-to-RGB colorization methods. bridging the gap between these imaging modalities to
leverage RGB-based algorithms without extensive retraining. thus significantly improving object
detection accuracy and reliability across practical. real-world scenarios.

Challenges of Object Detection

Reliable object detection remains challenging due to the inherent limitations and distinct vul-
nerabilities associated with different imaging modalities when operating in adverse environmental



conditions. While detection technologies are increasingly accurate in controlled or optimal conditions.
their performance rapidly deteriorates when facing real-world scenarios involving degraded visval
environments.

Despite RGB imaging widespread use. RGB-based detection methods inherently depend on
ambient illumination and visibility conditions. Adverse scenarios such as fog. haze, heavy shadows.
nighttime darkness. or noise introduced by bad weather significantly degrade RGB image quality,
resulting in reduced contrast and loss of fine details critical for accurate detection. Consequently,
detection reliability is severely affected, leading to frequent object mislocalization and misclassification.
Furthermore, as most deep-learning detectors are trained predominantly on clear-weather images,
their performance in challenging conditions is often compromised, highlighting the need for alternative
imaging modalities that are more resilient to environmental impairments.

TIR imaging offers advantages for detection tasks by capturing emitted radiation rather than
reflected light, providing resilience in varied lighting conditions. However, adoption is limited by several
key challenges: domain shift from RGE data requiring specialized model training, as visible-spectrum
trained models struggle with the fundamentally different visual features and contrast patterns in thermal
data. Low contrast and blurred edges significantly reduce the detail visibility needed for accurate object
detection. while sensor and spectral variability across different thermal imaging systems complicates
model generalization across deployments. Atmospheric degradation from fog or haze affects image
quality despite TIR's relative robustness, reducing contrast and blurring edges critical for detection
accuracy. Additionally, reflection artifacts from surfaces like metal and glass create misleading contours
that confuse detection algorithms. In video applications. mofion blur, camera instability, and temporal
noise accumulation further compromise detection consistency. These combined challenges significantly
affect detection reliability in critical applications. requiring advanced enhancement techniques to ensure
consistent performance across challenging operational environments.

The Goal of the Thesis

The goal of this thesis 18 to address the significant challenges posed by adverse weather conditions
on object detection systems, developing accurate deep learning methodologies tailored to overcome
these issues. The proposed approaches aim to surpass existing (SOTA) methods, achieving superior
performance across multiple benchmark datasets and real-world scenarios. To accomplish these
objectives, the thesis focuses on the following technical tasks:

1. Develop dehazing frameworks explicitly designed for RGB and TIR images.
2. Develop thermal image and video enhancement networks.

3. Develop a TIR-to-RGB colorization pipeline capable of translating thermal images into visually
intuitive RGB representations.

4. Conduct meticulous evaluations of the proposed frameworks, assessing their performance using
key metrics such as detection accuracy and generalization capability.



RGB Image Dehazed Image Colorized Image

Object Detection for
RGB Images

Thermal Image

Object Detection for
Thermal Images

Figure 4: Overall Workflow of the Thesis Framework.

Structure of the Thesis

The dissertation consists of 7 chapters and a list of used literature. The thesis is written in 150 pages
and has 249 literature references. The thesis contains 46 figures and 24 tables. Figure 4 illustrates
the logical progression of this thesis, demonstrating how each chapter systematically contributes to a
comprehensive framework for robust object detection under challenging visibility conditions.

Chapter 1 introduces the research context, clearly outlining existing limitations in object detection
under adverse weather conditions. It articulates the research questions and objectives and highlights
the key novel contributions made throughout the thesis.
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Figure 5: Overall architecture of EOD-Net.

Chapter 2 introduces an innovative deep-learning solution aimed at enhancing object detection in
challenging weather conditions, particularly addressing significant degradation caused by haze and
fog [1]. Despite considerable success, current state-of-the-art (SOTA) methods struggle with non-
homogeneous haze, preserving natural colors, small training datasets, and generally poor adaptability



for downstream tasks such as object detection. To overcome these limitations, this chapter presents
EOD-Net [2], a novel end-to-end RGB image dehazing architecture optimized specifically to improve
object detection in hazy environments. The pipeline for EOD Net, illustrated in Figure 5, features
several key innovations: Firstly, images undergo dual-branch processing: one branch dedicated to
light haze removal and another for heavy haze removal. These branches are merged via a specialized
Gray-Level Weighted Fusion module utilizing the Dark Channel Prior, described for image J as:

Jdatk(r) = min ( mianc(;t/))) (@)

yeti(x) \«€r,g,

Hazy Image - FFA-Net FOD-Net (Proposed)

Figure 6: Qualitative comparison on a real-world hazy image (top) and an outdoor test image (bottom).
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Figure 7: Vehicle detection results compared with SOTA dehazing methods.

This enhanced map enables the fusion of the dual branches into a unified, gray-level dehazed
image. Subsequently, a specialized Residual Channel Attention Network handles the coloring step,
restoring the natural color dynamics. Finally, an Attention-Based Gamma Correction (ABGC) module
corrects any misleading colors and edges by applying a pixel-wise transformation defined as:

A enhanced —0:(AC)7 1 /3 (2)

Here, a, (3, and 7 are outputs from the ABGC module, C £ R.G. B denotes the color channel,



and X c¢ represents the input color channel. Comprehensive evaluations on synthetic datasets (I-Haze,
O-Haze, NH-Haze?2) and real-world datasets confirm EOD-Net’s superior performance over existing
methods across various image quality metrics. Figure 6 demonstrates qualitative comparisons on
both hazy real-world and synthetic test set images, highlighting EOD-Net’s capability to recover
low-level and high-level details effectively in challenging scenarios. EOD-Net was evaluated against
the top-performing methods (ADN, TBD, SRKTDN) from the NTIRE 2021 non-homogeneous image
dehazing challenge, demonstrating superior performance in PSNR metrics and competitive results in
SSIM on the NH-Haze2 dataset, as shown in Table 1. Furthermore, practical tests conducted on traffic
surveillance footage reveal a substantial enhancement in object detection performance, shown in Figure
7. Unprocessed hazy footage typically detects only 3-4% of vehicles, whereas EOD-Net improves
detection to approximately 40% in severely hazed conditions. These results underscore EOD-Net’s
potential to significantly enhance visual clarity and thus safety in critical real-world applications.

Table 1: Performance comparison on NH-Hazc2 dataset

ADN TBD SRKTDN EOD-Net
PSNR 20.898 21.66 20.13 23.953
SSIM 0.844 0.843 0.803 0.842

Input BBCNN IE-CGAN WTHE MTIE-Net (Proposed)

Figure 8: Qualitative comparison of thermal image dehazing results and corresponding pseudo-color
visualizations.

Chapter 3 addresses thermal image dehazing under severe atmospheric degradation caused by haze,
smoke, and fog, which obscure details, lower contrast, and degrade downstream performance. Although
current SOTA methods achieve acceptable results in thermal imaging under visible-light conditions,
they still face considerable challenges in severe adverse conditions. To address these limitations, we
propose MTIE-Net [3], a novel Mamba-based thermal image dehazing framework leveraging the
Enhancement and Denoising State Space Model. This model integrates convolution-based attention
mechanisms with state-space modeling, enabling simultaneous denoising and enhancement of thermal
images, thereby restoring visibility while preserving crucial edges necessary for reliable object detection.
Due to the lack of labeled hazy thermal images, we introduce a novel synthetic data generation pipeline
leveraging the Atmospheric Scattering Model, defined as:

I(x) = J(x) m{x) -FA m(1 — where t(x) —e~'3d(*) 3)
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Figure 10: (a) Physics-driven deep PB-11D-Net Architecture for thermal image enhancement and analysis, it
consists of several modules: (b) the decomposition 11D-Net, enhancement net, (c) ghosting effect removal network
(GR-Net), (d) fusion net, and a pixel-wise gamma correction (PWGC) network.
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Figure 11: Generalizability of PB-1ID-Net: preserving edges, textures, and contrast across diverse domains.

principles of thermal radiation and scene structure. Figure 10 illustrates the architecture of PB-11D-Net.
The key contribution lies in using the extended Stefan-Boltzmann law to accurately decompose thermal
images into temperature and emissivity components:

Il=aeTh##
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where | represents the final image intensity, e denotes emissivity (the efficiency of a surface in
emitting thermal energy), T is the absolute temperature, and a, 6, and K are constants. This adaptation
facilitates precise modeling of real-world surface characteristics in thermal imagery. The framework
consists of sequential enhancement modules: 1. Decomposition, which separates temperature and
emissivity components using a newly proposed Laplacian pyramid network for improved detail visibility.
2. Artifact suppression (GR-Net) eliminates ghost artifacts and sensor noise while restoring critical
edges. 3. Fusion Module merges enhanced images using pixel-wise gamma correction for optimal
clarity. 4. The final enhanced image is converted into visually interpretable RGB images via a novel
pseudo-coloring mechanism with explicitly defined analytic color mapping (infrared and light-green)
for enhanced human interpretation and analysis. Figure 11 highlights PB-I11D-Net’s capability to recover
fine details and demonstrates improved interpretability through advanced colorization. Comprehensive
evaluations across multiple datasets (LTIR, CVC-14, Autonomous Vehicles, Solar Panel, and Breast)
confirm that PB-11D-Net significantly outperforms traditional and learning-based baselines across
various thermal-specific metrics, including the recently proposed Local and Global Thermal Assessment
(LGTA) [5J. The method consistently achieves superior object detection accuracy across different
infrared spectra (Near, Mid, and Far), as shown in Table 3, underscoring its practical relevance in many
real-world applications such as autonomous driving, medical imaging, and solar panel fault detection.
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Figure 12: (a) Overall architecture of TVEMamba, (b) Basic denoising state space model and attention- based
state space model, and (c) Basic denoising module and optical flow attention module.
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Table 3: Delection performance (mAP) on various inpuls and models

Org. Org. Orig. WTHh WTHH WTHH PB TID Net PB IID Net PB TIDNet PB HDNet PB HD Net PB TID Net

Measure on NIR on MIR onFIR onNIR on MIR on FIR
NIR MIR FIR onNIR onMIR onFIR © 2 « 2 « 2 « 4 « a @ —a
mAPjo t 519 566 482 531 58.4 49.9 60.5 63.8 559 59.7 63.2 56.4
mAP-5t 118 201 163 153 21 185 19.9 275 20.7 181 211 213
mAP- 1 226 251 225 235 26.8 241 284 315 217 269 309 29.1

Input IE-CGAN BBCNN IDTransformer TVEMamba (Proposed)

Figure 13: Qualitative comparison of motion artifact suppression on the wildlife BTRDSAI dataset.

Chapter 5 focuses on designing a Mamba-based framework for thermal video enhancement,
specifically targeting core challenges such as low contrast, motion blur, sensor noise, and frame-to-frame
inconsistencies that significantly hinder object tracking and detection performance. Existing SOTA
methods often enhance contrast, but. a. the cost, of introducing temporal flicker, motion misalignment,
and residual noise, limiting their practical reliability. To address these limitations, this chapter
introduces TVEMamba [6], which effectively resolves these issues in thermal video processing. The
overall pipeline of TVEMamba is illustrated in Figure 12. First., a sharpening and denoising network
enhances sharpness and removes noise using a Mamba-based encoder-decoder structure integrated
with the proposed Basic Denoising State Space Model (BDSSM), which includes a Basic Denoising
(BD) block specifically designed for sharpening and denoising tasks. This structure efficiently captures
both local details and global context. Next, a blur-resistant motion estimation module computes optical
flows (IE/, i and W t) between consecutive frames (Tt_i, T>, T, (i) using a global-to-local strategy
for robustness in challenging conditions. Finally, the motion deblurring network integrates the newly
proposed Attention-Based State Space Model (ABSSM) and Optical Flow Attention (OFA) modules
into a Mamba-based encoder-decoder architecture, leveraging optical flow estimates to generate
blur-free, corrected frames. These attention modules significantly enhance feature extraction and
effective handling of motion-induced blur. Extensive evaluations across five datasets (BIRDSAI,
FLIR, CAMEL, Autonomous Vehicles, and Solar Panels) demonstrate that TVEMamba surpasses
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existing SOTA methods in multiple non-reference quality metrics, including EME, BDIM, DMTE,
MDIMTE, LGTA, and B1E [5J. Figure 13 provides a detailed view of how TVEMamba preserves
and refines complex image features. The improvements in edge sharpness, textural fidelity, and
contrast balance are clearly visible, demonstrating the method’s ability to recover essential scene details.
Additionally, as shown in Table 4, TVEMamba enhances object detection accuracy by more than 15%
compared to the original, severely degraded wildlife monitoring footage. These results underscore
TVEMamba’s practical efficacy in critical applications such as wildlife monitoring, autonomous driving,
and UAV-based military operations, where precise and reliable object detection is essential.

Table 4: Object detection performance on the BIRDSAL dataset. YOLOi and Hyper-YOLOi models are trained
on original datasets, and YOLOZ2 and Hyper-YOLOa models are trained on enhanced datasets produced by the
TVEMamba framework.

Classes 2 3 2

Architecture  YOLOi YOLO2 YOLOi YOLO2  Flyper-YOLOI Hyper-YOLO2

mAPo0.5 38.1 44.2 25.0 29.7 38.0 43.9
UIAP0.5:0.9 13.2 16.8 9.3 10.9 129 16.4
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Figure 14: Overall Architecture of FWGAN for Thermal Image Translation and Analysis.

Chapter 6 presents a novel framework, FWGAN, designed for thermal image colorization,
effectively translating thermal imagery into visually realistic RGB representations. FWGAN addresses
current limitations, such as semantic distortions, temporal inconsistency, poor small-object handling,
and insufficient texture preservation, particularly for objects where temperature variations can appear
similar. The proposed framework extends our prior research [7] on thermal image colorization, which
incorporates enhanced generative adversarial techniques with semantic-aware multitask learning for
superior domain translation performance (Figure 14). Key innovations of the FWGAN include a

15



PearlGAN

MomGAN FoalGAN FWGAN (Proposed)

Figure 15: Qualitative comparison of FWGAN against SOTA methods for night-time TIR to-RGB colorization.

Preprocessing Module that improves sharpness and reduces noise through an encoder-decoder structure,
a Frame-based Deep Feature Extractor Module combining complementary semantic features from
pretrained DINOv2 and ResNet50 backbones, and a Frame Information Update mechanism for
maintaining temporal consistency across video frames. Furthermore, we propose an extended Weber
Contrast Law-driven edge detection mechanism, significantly enhancing edge preservation:

/(E) =300 m f' . -Lmin \ /' Lmax Lmnj (5)
af'min f C / \' Lnuh~PC

where Lmx and L mindenote maximun®gnd minimum intensities in a local 3 x 3 region of thermal
image L, and ¢ = 1. Evaluations on FLIR and KAIST datasets demonstrate FWGAN s superior
performance across key metrics (NIQE, BRISQUE, PIQE). Figure 15 highlights FWGAN's capability
in realistic colorization and improved visibility of small objects and structural details. Compared to
SOTA methods, FWGAN significantly enhances object detection accuracy by approximately 3.5%,
underscoring its applicability in autonomous driving systems under challenging visibility conditions.

Chapter 7 concludes the thesis by summarizing the main contributions, discussing current lim-
itations, and proposing potential future research on robust multi-modal perception in challenging
environmental conditions.
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Contributions

1. Developing EOD-Net, a specialized RGB image dehazing architecture that enhances visibility
and object detection in hazy conditions, introducing a dual-branch dehazing system featuring
the novel GLWF module and a specialized ABGC module for precise color restoration.

2. Developing MTIE-Net, a Mamba-based thermal image dehazing network introducing a novel
convolution-based attention Enhancement and Denoising (ED} module in SSM for optimized
image enhancement and a new hazy thermal image generation pipeline.

3. Developing PB-IID-Net. a physics-based thermal enhancement network that introduces ex-
tended Stefan-Boltzmann law for image decomposition/reconstruction, GR-Net for artifact
reduction, and pseudo-coloring methods for better visual interpretation.

4. Developing TVEMamba, a Mamba-based thermal video enhancement framework, mtroducing
specialized denoising and optical-flow estimation modules that address motion-induced blur and
temporal inconsistencies, significantly improving detection accuracy.

5. Developing FWGAN, a Weber-law-driven GAN for TIR-to-RGB image translation, mtroducing
a novel FDFEM Module and a preprocessing step, enhancing realism and semantic accuracy in
translated images, crucial for improved RGB object detection performance in adverse conditions.

6. Evaluating real-world scenarios across diverse datasets demonstrates the effectiveness of these
proposed methods when compared to existing SOTA techniques.

Practical Contributions of the Thesis

The practical contributions of this thesis are validated through extensive evaluations, highlighting the
effectiveness of the proposed methods. The contributions include:

1. Enhanced object detection for autonomous driving: Evaluated on widely-used datasets
including FLIR and KAIST, crucial for developing robust thermal object-detection systems.
Significant improvements were observed in detection accuracy under fog and low-light conditions,
essential for safe antonomous navigation.

2. Improved wildlife monitoring capabilities: Validated using the BIRDSAI dataset, commonly
employed for evaluating UAV-based wildlife-detection systems. Enhanced detection accu-
racy facilitates more reliable conservation monitoring and anti-poaching efforts in challenging
environments.

3. Robust dehazing for challenging atmospheric conditions: Validated against the top three
NTIRE-2021 non-homogeneous dehazing methods. achieving superior quantitative results and
improving visibility and detection accuracy in foggy conditions for environmental-monitoring
applications.

4. Reproducible research: All generated datasets are publicly available!, ensuring transparency
and enabling further advances in robust object-detection methodology.

'hrtpat//github. com/SargisHovhannisyan/Objsect-Detaction—in-Adverse-Weather
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This thesis addresses real-world problems approved and funded by the FAST Foundation under the
ADVANCE Research Program. in cooperation with the Higher Education and Science Committee of
the Republic of Armenia (Project No. 25FAST-1B001).

Potential Application Domains

The methodologies presented in this thesis have broad applicability across numerous safety-critical
and high-value domains:

1.

Search and Rescue Operations: Enhance visibility and consistency across video frames, crucial
for detecting survivors and obstacles during UAV -assisted disaster response missions.

. Medical Imaging and Diagnostics: Improve contrast and reduce distortions in thermal medical

imagery, aiding early detection of diseases such as breast thermography and skin diagnostics.
Military-based Systems: Enhance visuval clarity and object detection capabilities in adverse

conditions, supporting critical military surveillance and tactical operations.

Security Surveillance and Smart-City Monitoring: Improve visual clarity in RGB and ther-
mal images under low-light conditions, significantly boosting detection reliability and ensuring
public safety.
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Ywunwpyws  quwhwwndubpp hpdowdnpnd BU dowlhdus  jmidnwdubiph
wpryniiwdbnngggniup bW gnyg GBU wwhu ppuilg Yhpwnbtjhmgmup - ppuljwi
Yhpwnwlwl futnhpubipnod:

Uguwwnwph hppuwlwt tyunnwlobp 6L’

1. Ywnmgh| fjunpp nunigdwis inp guiigbin® htswbu gniiwynp (RGB), wiliybu b
obiptwht {TIR) wwwybnubnhg dwnwfuninp Yud donipp hbrwgubpt hwdwn:

2. Uunbindt) junpp numgdwi guwiigbn' gbpdwht wywnlbpubph L wbuwipngetph
npwyp pwpbpuwdGine hwdwp (pupdpwgtb] hwywnpnyeniup, bduqbguby
wnuntyp}, npwtiugh hwpunbwptipndp nuintiu wybih d2gphin b Jugni:

3. Umbindb) funpp nunmgdw unp gwig' sbpdwhu wwwybpubnh gniuwynpdwt
hwdwn: Uyt pnyg uw oguwgnpdt opiblnbbph huynwpbpdwb wpnbu pul
(wjunpbt Yppwndnn dbpnnubpp, funwunhbing  sipdwghtt yuwwnlbpubpng
dGpwnwngmdhg  htsp wwhwbend £ obpdwht wenjyuwgubph b L
whunwlwynpud hufwpwdniubp, npntig Juipnn B uwhdwbwgwl huby:

4, Uwupwiwull quwhwint] wrwswnplynn indnwfubph wpryniowybunnipiniop
(hwuiluybu  bugubwpbpdwtu  Sogpompgniup) gpuilp  dhnpdwpybnyg
nwpwwnbuwl hpuwywt wujdwtiabpmd:

Unwohts qumjup UbpYuywgunud £ hbwwgnngpus wpnhwywunyggniup,
wupwpbuywuw bnwiwlht opjblmubph hwwnwtwpbpdwt  fwunhpp, wotuwwnwuph
Uywnwyubpu n uinhpubpp W wnbuwfununyewiu bhduwlw bap dnnbgndubnp:
Gpypnpn qnijup ubplujwgund £ jupin dongnin yuwpdwbitbpnud - opgblpntubph
hwjuntiwpbpdwt wpryniiwyBungegniup pupdpwguine mdmdp' funpp nungdwt unp
EOD-Net gwugh dhongny: Upryniaputipp gnyg Gu b hwpniwpbipdwi Gagpunncpput
qquih pwnbpuynd® 3-4%-hg hwutbng dnn 40%-h:

Bpprpn qrlumd wnwownlynid £ MTIE-Net wuniuny np gwig (hpdudwsd «Uwdpws
donbjubpp Jpw)' obpdught yuwnybpubphg donop hbnwgubine hwdwp: U depennp
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pwpbunfnd o hwpuniwpbpdwtn G2gpuonpniop 35%-ny’  hwdtidwinwsd  sdowlwd
dwnwfuniuuywin sepdwiht wwwnlytpubph hin:

nppnpn gfund UbpYugwgynid | obpdwght wywnybptbph npuyp pupbjpudbin dbenn
(Qwuwdp hhdudws upwug $hahywywt tbpyuywgdwt Jpw) PB-IID-Net gulgh
dhgngnd: Wu Yppwntih £ hupulwpdhp uwbnph gutlwgws nhpnyph huwdwp b
pwndpwgunwd £ hwuntwpbpdwt wpyniswdbwnyzniop wybh pwu 9%-ny:
<hugqbpnpn qilunid wnwewplhdmd £ unp TYEMamba gwug {(hpuudwd «Uwidpw»
donblubpp  Jpw) obpdught wbuwinebph npwlyp  pwpbpodbine hwdwp: Uy
pwpdapwgunud £ opiliintbiph hwntuwpbpdw Gagnpnniegmin down 15%-ny:

dbgbpnpy qpumd dowlly E FWGAN unp guugp, npp ghpdwjht wwwnlyGpubpp
Ybpwdnud £ wphbunwljut gniiwynp {RGB) wyunnljtiptiiph: Wu dbpnnp pupapwugnd
I opylunubiph hupintiwpbipdw Sogpinngggmiup wdbgh put 3%-ny:

Snptpnpn qilund withnhynd By wnbtwununyejw bhduwlw wpryniupubpp L
putwpyynud  GU  wipwpbbywuw  wuwlwht wwpPdwioubpod - gnpdnn
hwwntwpbpdwi hwdwluwpgbph hbnwgu pwpbpuddwt huwpwynp nipgnyegniubbpp:
<phduwlwt Yhpwnwlut wpnymuphbp

o  Wluwwnwupmd Jawyyws dbpnnubph  wprynwydbuonggmiop unnigyl) |
hwdwwwnihwy  dnpdwnpynufubpnyg, npnup gnyg  Bu gl opjlintubph
hwpnuwpbpdw buwdwlhuwpgbph  Gagnnpjut L Yumimpgwt qquih
pwnbpdmd, huwnywubu wipwpbiywuw nuwtwlwiht wuydwuubpod:

o  hulywsd dhpnnubph quwhwanwip uuwpygt] b huptwjwnp wpwtiugnpuw)h
hwdwlpwpgbnh unmwiunwpunwgdwsd  obpdwght (TIR) wjwnlypubph
hwywpwdniubpny (FLIR, KAIST}, npnup juwunpbt oquwgnpdmd G hpuljwt
hwdwlwngbpp bwhiwgdiwy b quwhwwdwt hwdwn: Upryniupubpp gnyg b
nyb hwinuwpbpdw gquih wé dangh W gudn nuwdnpeejw wwdwiuubnn:

o Unwowplwsd dhpnqubnp  wprynibwdbompgniup unniqyly £ BIRDSAIL
nbuwuynebpp hwdwpwdnih dhongnd, npp bwhiwnbudwsd £ wuonwsny pnsnn,
uwpnpbipny Juyph Yeunwuptbph (tntph) nhuwpliiwt hwdwp: Wa jwanpbu
Yhpwnynwd £ hwljwnpuwgnnngguin b puwywhwwtiulut nbuwhulpdw hpwljuts
hwdwlwpgbiph quuwhwwndwis hwdwn:

o Wluwinwupnu oguiwgnpddwd pnpp gbubpwgdwsd b Yppwndwéd wdjuiubph
hwywpwdniubpp bpuwwwpwyybp 6o hwdwgwugnuyd wwwhndbiny  unwgyws
wpryniuptbpp widpanowlwt Yapwpumwnpbihnygmniup, hust wewlygnud £ hbwnwagu
hbunwgnuingegniubppu L dbpanubiph gnpdbwlws Yhpwaengepuup:
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3aKIOoUeHHE
OranuucsH Capruc AHApeacoBUY

OOGHapykeHHE OGBCKTOB B HEOIATOIIPHATHBIX MOTOIHBIX VCIIOBHSIX ¢ HCTIONB30BAHUEM METOA0B
DIYOOKOTO 00YUeHH, 8 TAKKE BHIUMBIX H TEIUIOBBIX H300POKEHHH

PatoTa NocBAMEHa YITY MIUCHHIO U MOBBIICHHIO Y CTOHYHBOCTH CHCTEM OCHADY KeHHUA 00BEKTOB,
0CO0eHHO B HeGMATONPHATHBIX MOTOJAHBIX YCIOBHAX (TYM4H. JBIM. AbIMKA, YCIIOBHSI HH3KOH
ocBelleHHOCTH). C 3Tol Lenmblo ObUTH pas3paCoTaHbl HOBBIC METONBI [IYGOKOTO OOYYEHIS,
HCTIOMb3yoIMe kak 1BeTHble (RGB). Tak U TemwnoBele (TIR) uso0pakeHUI H BHICO3AIMCH.
[TpoBencHHBIE OLEHKH OCOCHOBBIBAIOT  »(P(PeKTUBHOCTE  Pa3paloTaHHBIX PEIUCHHH U
JeMOHCTPHPYIOT HX NIPHMEHHUMOCTD B PEANbHBIX NPHKIIAAHBIX 3a0a4aX.

OCHOBHBIC LIETH paGOTHL:

1. TlocTpouTs HOBHIE CETH LTYOOKOTo OOYyUYeHHd Wi yIaleHHsa TyMAHA WIH JBIMKH KakK ¢
uBeTHEIX (RGB), Tak u ¢ Termosex ( TIR) n306paxkeHmit.

2. Co3pate cetd rmyGokoro o0yueHHs AT YTy YIleHHd Ka4ecTPa TeILTORbIX H200paKeHui
H BHIEeO (MOBBICHTH KOHTPACTHOCTh, CHH3MTL YPOBEHE ILIYMa), YTOOB OOHAPYKEeHHe
CTao Hoee TOUHBIM H ¥ CTOHMMBEIM.

3. Co3gaTb HOBYIO ¢eTh ITyGOKOTO 00YUCHUA I KOTIOPH3ALH TEIUIOBBIX H300pakeHUI.
3T0 MO3BOIMT HCIIONB30BATh YK LIMPOKO NPHMCHACMBIE METOIBI OGHAPYKEHUA
OOBEKTOB, H30eTas NepeoOyUEHHS Ha TEIUIOBBIX H300PaKSHMSX, UTO TPedveT GONMBIIMX
HHOTHPOBAHHBIX HAGOPOB TEIVIOBBIX JAHHBIX. KOTOPBIE MOTYT OBITh OT pAaHHYEHEL.

4, JletanbHO OLCHUTDL 3(PQPeKTHBHOCTE MPEAIATAeMBIX PEllcHHH (0COGEHHO TOUHOCTD
OCHapYKeHHA ). TCTUPYS HX B Pa3sHOOOPasHEIX PEAbHBIX VCIIOBHSIX.

IlepBan raBa NpejcTaBIAeT aKTy ANEHOCTh HCCTIENOBAHIA, NIPoOneMy 0OHapykeHHI 0ObeKTOB B
HeONATONPHATHEIX MOTOJHBIX YCIOBHAX, LIENH H 3aJa4 paboTel, a Takke OCHOBHBIE HOBBIE
MOAX0JbI AHUCCEPTALIAH.

Bropas raBa npeCcTABNAET PellieHHe LIS MOBBILEHHS 3 {peKTHBHOCTH 0GHaPY KeHHT
OOBEKTOR B YCIIOBHSX I'YCTOH TEIMKH ¢ IIOMOILBIO HOBOH ceTH rmyOokero odyyeHns EOD-Net.
PezynbTare! Noka3any 3HAUMHTENBHOE VITyYIleHHe TOYHOCTH 00HapYkeHHq: ¢ 3-4% 1o npuMepHo
40%.

B TpeTreiil maBe npennaraetca Horad ceThb rod HazBaHeM MTIE-Net (ocHopaHHag Ha MOTENIX
«Mamba») a1a ymaneHHs JBIMKH ¢ TEIUIOBBIX H30OpakeHMi. DTOT METON YIIyIlaeT TOUMHOCTh
o0HapyxkeHHaA Ha 35% mno cpaPHeHHIO ¢ HeoOpaGoTAHHBIMM TeIUIOBBIMH H300pakeHHIMH B
YCIOBHAX Ty MAHA/ JBIMKH.

B uerBepToil IIaBe NpeICTABIAETCS MeTOJ YIAyUIIEHHT KAYeCcTPA TEIUIOBEIX H30GpaKeHM
(MacTIMHO OCHOBAHHBIA HA X PH3HUECKITX XAPAKTEPUCTHKAX) € oMok ceTi PB-IID-Net. Ox
MpPUMEHHM U191 JEOOOr0 JHAma30HA HHOPAKPACHOTC CIeKTpa M MOBHILAET 3PeKTHBHOCTHL
oOHapyxeHus Gonee yeM Ha 9%.

B naToii rmase npepiaractes Hopad ceTh TYEMamba (ocHoBaHHas Ha Mogersx « MamGan ) st
VIVYIICHUS Ka4yecTBa TCIUIOBBIX BHAcosamicell. OHa IOBBIIACT TOYHOCTE OOHAPYKSHHA
00BCKTOR IPHMEPHO Ha 15%.
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B wecToii rnaBe paspa6oTaHa HoBas ceTb FWGAN, KkoTopas npeoGpasyeT TennoBble
1306paXKeHnss B WUCKYCCTBEHHO okKpaweHHble (RGB) u3o6paxeHus. 3TOT MeToh NOBbILWAET
TOYHOCTb 06Hapy>XeHUs 06LeKTOB 6onee Yem Ha 3%.

B cefbMoli rnaBe 0606LLat0TC OCHOBHbIE Pe3y/bTaThl JUCCEPTALMN U 06CYXK A TCA BO3MOXHbIE
HanpaBneHus AanbHelwunx uccnefoBaHWii, CBA3aHHble C pa3BUTMEM CUCTEM OBGHapyXeHus,
paboTalLmnx B He61aronpuATHbLIX MOTO4HbIX YCNOBUAX.

OCHOBHbIe NpaKTU4YecKue pesybTaTbl

e JddeKTUBHOCTL pa3paboTaHHbIX B paboTe METOAOB Gblfia MPOBEpeHa NyTemM BCECTOPOHHMX
UCMbITaHWA, KOTOpble MOKa3anW 3HauWTeNbHOe YNyuylleHWe TOYHOCTM W YCTONuYMBOCTU
CUCTEM 06HApYXeHUs 06BEKTOB, 0COGEHHO B HE6NAroNpUATHbLIX NOTOAHbIX YC/IOBUSAX.

e OueHka pa3paboTaHHbIX MeTOA4OB MPOBOAMNACh Ha CTaHAAPTW3MPOBaHHbIX Habopax
TennoBbiX (TIR) n3o6paxkeHUit ans aBTOHOMHbIX TpaHcnopTHbIX cuctem (FLIR, KAIST),
KOTOPble LUWPOKO MCMOMb3YKTCA ANA MNPOEKTUPOBAHUSA M OLEHKW peanbHbIX CUCTEM.
PesynbTaTbl NOKa3anu 3HaYNTENbHbIA POCT NOKa3aTeneil 06HapyXXeHNs B YCN0BUAX AbIMKN U
HW3KOI OCBELLEHHOCTH.

. S(hPeKTUBHOCTL NpefNoXEeHHbIX MeTof0B Oblna MNpoBepeHa C MomoLWbilo  Habopa
BugeonaHHbelx BIRDSAI, npefHasHauyeHHOro Ana HabnwgeHUs 3a AUKUMUW XXUBOTHbIMU
(cnoHamu) ¢ ucnonb3oBaHWem GeCNUNOTHLIX NeTaTeslbHbIX annapatos. OH LIKWPOKO
npUMeHseTCcsa ANA OLEHKWN peanbHbIX CUCTEM 60PbObLI C BPAKOHLEPCTBOM U 3KONOrMYECKOro
MOHUTOPUHra.

. Bce creHepupoBaHHble U UCNOJIb30BaHHble B paboTe Habopbl faHHbIX 6blAK 0Ny61NKOBaHbI
B WHTepHeTe, obecneymsas MOJIHY0 BOCMPOU3BOAMMOCTb MONYYEHHbIX Pe3ynbTaToB, YTO
C-l'IOCOGCTB_\,'C' T JIAJTLHEHIIM MCCIICIOBAHUAM 1 IPAKTUYCCKOMY IPUMEHCHHIO METO/I0B.
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